Improving premise structure in evolving Takagi-Sugeno neuro-fuzzy classifiers

被引:22
|
作者
Almaksour A. [1 ]
Anquetil E. [1 ]
机构
[1] INSA de Rennes/UMR IRISA, 35043 Rennes, Avenue des Buttes de Coesmes
关键词
Incremental learning; Neuro-fuzzy; Takagi-Sugeno;
D O I
10.1007/s12530-011-9027-0
中图分类号
学科分类号
摘要
We present in this paper a new method for the design of evolving neuro-fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno neuro-fuzzy model. We propose a modification on the premise structure in this model and we provide the necessary learning formulas, with no problem-dependent parameters. We demonstrate by the experimental results the positive effect of this modification on the overall classification performance. © 2011 Springer-Verlag.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 50 条
  • [1] Exploiting the Functional Training Approach in Takagi-Sugeno Neuro-fuzzy Systems
    Cabrita, Cristiano L.
    Ruano, Antonio E.
    Ferreira, Pedro M.
    Koczy, Laszlo T.
    SOFT COMPUTING APPLICATIONS, 2013, 195 : 543 - 559
  • [2] Efficient training algorithm for Takagi-Sugeno type neuro-fuzzy network
    Palit, AK
    Babuska, R
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 1367 - 1371
  • [3] A Takagi-Sugeno type neuro-fuzzy network for determining child anemia
    Allahverdi, Novruz
    Tunali, Ayfer
    Isik, Hakan
    Kahramanli, Humar
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) : 7415 - 7418
  • [4] Takagi-Sugeno Dynamic Neuro-Fuzzy Controller of Uncertain Nonlinear Systems
    Cervantes, Jorge
    Yu, Wen
    Salazar, Sergio
    Chairez, Isaac
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (06) : 1601 - 1615
  • [5] Neuro-fuzzy inspection system for concrete strength based on Takagi-Sugeno fuzzy rules
    Xu, Jing
    Feng, Qi-Min
    Yang, Song-Sen
    Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing, 2005, 20 (04): : 488 - 492
  • [6] An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    Amitava Chatterjee
    Keigo Watanabe
    Neural Computing & Applications, 2006, 15 : 55 - 61
  • [7] Nonlinear system identification using Takagi-Sugeno type neuro-fuzzy model
    Panchariya, PC
    Palit, AK
    Popovic, D
    Sharma, AL
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 76 - 81
  • [8] Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
    Talei, Amin
    Chua, Lloyd Hock Chye
    Quek, Chai
    Jansson, Per-Erik
    JOURNAL OF HYDROLOGY, 2013, 488 : 17 - 32
  • [9] An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    Chatterjee, A
    Watanabe, K
    NEURAL COMPUTING & APPLICATIONS, 2006, 15 (01): : 55 - 61
  • [10] HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
    Dziwinski, Piotr
    Przybyl, Andrzej
    Trippner, Pawel
    Paszkowski, Jozef
    Hayashi, Yoichi
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2021, 11 (03) : 243 - 266