Self-supervised coarse-to-fine monocular depth estimation using a lightweight attention module

被引:0
|
作者
Yuanzhen Li
Fei Luo
Chunxia Xiao
机构
[1] Wuhan University,School of Computer Science
来源
关键词
monocular depth estimation; texture copy; depth drift; attention module;
D O I
暂无
中图分类号
学科分类号
摘要
Self-supervised monocular depth estimation has been widely investigated and applied in previous works. However, existing methods suffer from texture-copy, depth drift, and incomplete structure. It is difficult for normal CNN networks to completely understand the relationship between the object and its surrounding environment. Moreover, it is hard to design the depth smoothness loss to balance depth smoothness and sharpness. To address these issues, we propose a coarse-to-fine method with a normalized convolutional block attention module (NCBAM). In the coarse estimation stage, we incorporate the NCBAM into depth and pose networks to overcome the texture-copy and depth drift problems. Then, we use a new network to refine the coarse depth guided by the color image and produce a structure-preserving depth result in the refinement stage. Our method can produce results competitive with state-of-the-art methods. Comprehensive experiments prove the effectiveness of our two-stage method using the NCBAM.
引用
收藏
页码:631 / 647
页数:16
相关论文
共 50 条
  • [31] Self-Supervised Monocular Scene Decomposition and Depth Estimation
    Safadoust, Sadra
    Guney, Fatma
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 627 - 636
  • [32] Joint Self-Supervised Monocular Depth Estimation and SLAM
    Xing, Xiaoxia
    Cai, Yinghao
    Lu, Tao
    Yang, Yiping
    Wen, Dayong
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4030 - 4036
  • [33] Learn to Adapt for Self-Supervised Monocular Depth Estimation
    Sun, Qiyu
    Yen, Gary G.
    Tang, Yang
    Zhao, Chaoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15647 - 15659
  • [34] Learn to Adapt for Self-Supervised Monocular Depth Estimation
    Sun, Qiyu
    Yen, Gary G.
    Tang, Yang
    Zhao, Chaoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15647 - 15659
  • [35] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE Transactions on Image Processing, 2022, 31 : 3251 - 3266
  • [36] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3251 - 3266
  • [37] Self-supervised monocular depth estimation for gastrointestinal endoscopy
    Liu, Yuying
    Zuo, Siyang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [38] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [39] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [40] Adaptive Self-supervised Depth Estimation in Monocular Videos
    Mendoza, Julio
    Pedrini, Helio
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 687 - 699