Self-supervised monocular depth estimation with direct methods

被引:0
|
作者
Wang H. [1 ]
Sun Y. [1 ]
Wu Q.M.J. [2 ]
Lu X. [1 ]
Wang X. [1 ]
Zhang Z. [1 ]
机构
[1] Robotics Research Center, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao
[2] Department of Electrical and Computer Engineering, University of Windsor, Windsor, N9B-3P4, ON
基金
中国国家自然科学基金;
关键词
Auto-mask; Depth estimation; Monocular vision;
D O I
10.1016/j.neucom.2020.10.025
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Depth estimation is crucial to understanding the geometry of a scene in robotics and computer vision. Traditionally, depth estimators can be trained with various forms of self-supervised stereo data or supervised ground-truth data. In comparison to the methods that utilize stereo depth perception or ground-truth data from laser scans, determining depth relation using an unlabeled monocular camera proves considerably more challenging. Recent work has shown that CNN-based depth estimators can be learned using unlabeled monocular video. Without needing the stereo data or ground-truth depth data, learning with monocular self-supervised strategies can utilize much larger and more varied image datasets. Inspired by recent advances in depth estimation, in this paper, we propose a novel objective that replaces the use of explicit ground-truth depth or binocular stereo depth with unlabeled monocular video sequence data. No assumptions about scene geometry or pre-trained information are used in the proposed architecture. To enable a better pose prediction, we propose the use of an improved differentiable direct visual odometry (DDVO), which is fused with an appearance-matching loss. The auto-masking approach is introduced in the DDVO depth predictor to filter out the low-texture area or occlusion area, which can easily reduce matching error, from one frame to the subsequent frame in the monocular sequence. Additionally, we introduce a self-supervised loss function to fuse the auto-masking segment and the depth-prediction segment accordingly. Our method produces state-of-the-art results for monocular depth estimation on the KITTI driving dataset, even outperforming some supervised methods that have been trained with ground-truth depth. © 2020 Elsevier B.V.
引用
收藏
页码:340 / 348
页数:8
相关论文
共 50 条
  • [1] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [2] Digging Into Self-Supervised Monocular Depth Estimation
    Godard, Clement
    Mac Aodha, Oisin
    Firman, Michael
    Brostow, Gabriel
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3827 - 3837
  • [3] Self-supervised monocular depth estimation in fog
    Tao, Bo
    Hu, Jiaxin
    Jiang, Du
    Li, Gongfa
    Chen, Baojia
    Qian, Xinbo
    OPTICAL ENGINEERING, 2023, 62 (03)
  • [4] On the uncertainty of self-supervised monocular depth estimation
    Poggi, Matteo
    Aleotti, Filippo
    Tosi, Fabio
    Mattoccia, Stefano
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3224 - 3234
  • [5] Revisiting Self-supervised Monocular Depth Estimation
    Kim, Ue-Hwan
    Lee, Gyeong-Min
    Kim, Jong-Hwan
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 336 - 350
  • [6] Dense Depth Estimation in Monocular Endoscopy With Self-Supervised Learning Methods
    Liu, Xingtong
    Sinha, Ayushi
    Ishii, Masaru
    Hager, Gregory D.
    Reiter, Austin
    Taylor, Russell H.
    Unberath, Mathias
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1438 - 1447
  • [7] Semantically guided self-supervised monocular depth estimation
    Lu, Xiao
    Sun, Haoran
    Wang, Xiuling
    Zhang, Zhiguo
    Wang, Haixia
    IET IMAGE PROCESSING, 2022, 16 (05) : 1293 - 1304
  • [8] Self-Supervised Monocular Scene Decomposition and Depth Estimation
    Safadoust, Sadra
    Guney, Fatma
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 627 - 636
  • [9] Joint Self-Supervised Monocular Depth Estimation and SLAM
    Xing, Xiaoxia
    Cai, Yinghao
    Lu, Tao
    Yang, Yiping
    Wen, Dayong
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4030 - 4036
  • [10] Learn to Adapt for Self-Supervised Monocular Depth Estimation
    Sun, Qiyu
    Yen, Gary G.
    Tang, Yang
    Zhao, Chaoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15647 - 15659