Self-supervised monocular depth estimation with direct methods

被引:0
|
作者
Wang H. [1 ]
Sun Y. [1 ]
Wu Q.M.J. [2 ]
Lu X. [1 ]
Wang X. [1 ]
Zhang Z. [1 ]
机构
[1] Robotics Research Center, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao
[2] Department of Electrical and Computer Engineering, University of Windsor, Windsor, N9B-3P4, ON
基金
中国国家自然科学基金;
关键词
Auto-mask; Depth estimation; Monocular vision;
D O I
10.1016/j.neucom.2020.10.025
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Depth estimation is crucial to understanding the geometry of a scene in robotics and computer vision. Traditionally, depth estimators can be trained with various forms of self-supervised stereo data or supervised ground-truth data. In comparison to the methods that utilize stereo depth perception or ground-truth data from laser scans, determining depth relation using an unlabeled monocular camera proves considerably more challenging. Recent work has shown that CNN-based depth estimators can be learned using unlabeled monocular video. Without needing the stereo data or ground-truth depth data, learning with monocular self-supervised strategies can utilize much larger and more varied image datasets. Inspired by recent advances in depth estimation, in this paper, we propose a novel objective that replaces the use of explicit ground-truth depth or binocular stereo depth with unlabeled monocular video sequence data. No assumptions about scene geometry or pre-trained information are used in the proposed architecture. To enable a better pose prediction, we propose the use of an improved differentiable direct visual odometry (DDVO), which is fused with an appearance-matching loss. The auto-masking approach is introduced in the DDVO depth predictor to filter out the low-texture area or occlusion area, which can easily reduce matching error, from one frame to the subsequent frame in the monocular sequence. Additionally, we introduce a self-supervised loss function to fuse the auto-masking segment and the depth-prediction segment accordingly. Our method produces state-of-the-art results for monocular depth estimation on the KITTI driving dataset, even outperforming some supervised methods that have been trained with ground-truth depth. © 2020 Elsevier B.V.
引用
收藏
页码:340 / 348
页数:8
相关论文
共 50 条
  • [31] Self-Supervised Human Depth Estimation from Monocular Videos
    Tan, Feitong
    Zhu, Hao
    Cui, Zhaopeng
    Zhu, Siyu
    Pollefeys, Marc
    Tan, Ping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 647 - 656
  • [32] Self-Supervised Monocular Depth Estimation with Multi-constraints
    Yang, Xinpeng
    Zhang, Sen
    Zhao, Baoyong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8422 - 8427
  • [33] Self-supervised Monocular Depth Estimation on Unseen Synthetic Cameras
    Diana-Albelda, Cecilia
    Bravo Perez-Villar, Juan Ignacio
    Montalvo, Javier
    Garcia-Martin, Alvaro
    Bescos Cano, Jesus
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 449 - 463
  • [34] Self-Supervised Deep Monocular Depth Estimation With Ambiguity Boosting
    Bello, Juan Luis Gonzalez
    Kim, Munchurl
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9131 - 9149
  • [35] MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer
    Zhao, Chaoqiang
    Zhang, Youmin
    Poggi, Matteo
    Tosi, Fabio
    Guo, Xianda
    Zhu, Zheng
    Huang, Guan
    Tang, Yang
    Mattoccia, Stefano
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 668 - 678
  • [36] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
    Peng, Rui
    Wang, Ronggang
    Lai, Yawen
    Tang, Luyang
    Cai, Yangang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15540 - 15549
  • [37] A LIGHTWEIGHT SELF-SUPERVISED TRAINING FRAMEWORK FOR MONOCULAR DEPTH ESTIMATION
    Heydrich, Tim
    Yang, Yimin
    Du, Shan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2265 - 2269
  • [38] Constant Velocity Constraints for Self-Supervised Monocular Depth Estimation
    Zhou, Hang
    Greenwood, David
    Taylor, Sarah
    Gong, Han
    CVMP 2020: THE 17TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2020,
  • [39] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Sun, Lin
    Li, Yi
    Liu, Bingzheng
    Xu, Liying
    Zhang, Zhe
    Zhu, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42485 - 42495
  • [40] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Lin Sun
    Yi Li
    Bingzheng Liu
    Liying Xu
    Zhe Zhang
    Jie Zhu
    Multimedia Tools and Applications, 2022, 81 : 42485 - 42495