Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers

被引:0
|
作者
Anita Sathyanarayanan
Hamzeh M. Tanha
Divya Mehta
Dale R. Nyholt
机构
[1] Queensland University of Technology,
[2] Centre for Genomics and Personalised Health,undefined
[3] Faculty of Health,undefined
[4] Queensland University of Technology,undefined
[5] School of Biomedical Sciences,undefined
[6] Faculty of Health,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based and conventional methylome-wide association analyses for breast cancer (BrCa) and prostate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide association summary statistics (NBrCa = 228,951, NPrCa = 140,254) and prebuilt methylation prediction models, while the conventional approach identified CpG associations utilising TCGA and GEO experimental methylation data (NBrCa = 621, NPrCa = 241). Enrichment analysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings highlight the utility of integrative analysis of multi-omic cancer data to identify robust biomarkers and understand their regulatory effects on cancer risk.
引用
收藏
相关论文
共 50 条
  • [31] Multi-omic analysis of dysregulated pathways in triple negative breast cancer
    Sajjad, Fatima
    Jalal, Ahmer
    Jalal, Amir
    Gul, Zulekha
    Mubeen, Hira
    Rizvi, Seemal Zahra
    Un-Nisa, Ex Alim
    Asghar, Andleeb
    Butool, Farah
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2024, 20 (04) : 450 - 462
  • [32] Integrative multi-omic analysis reveals novel prognostic biological entities in pediatric medulloblastoma
    Rathi, Komal
    Kesherwani, Varun
    Naqvi, Ammar S.
    Zhu, Yuankun
    Sickler, Alex
    Huang, Xiaoyan
    Zhang, Bo
    Rood, Brian
    Resnick, Adam C.
    Kraya, Adam A.
    CANCER RESEARCH, 2024, 84 (06)
  • [33] Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
    Aviner, Ranen
    Shenoy, Anjana
    Elroy-Stein, Orna
    Geiger, Tamar
    PLOS GENETICS, 2015, 11 (10):
  • [34] The Reninness Score: Integrative Analysis Of Multi-omic Data To Define Renin Cell Identity
    Xue, Bingjie
    Medrano, Silvia
    Martini, Alexandre G.
    Smith, Jason
    Sheffield, Nathan
    Gomez, Roberto A.
    Lopez, Maria Luisa S. Sequeira
    HYPERTENSION, 2023, 80
  • [35] Defining the relationship between cellular and extracellular vesicle (EV) content in breast cancer via an integrative multi-omic analysis
    Lane, Rebecca E.
    Korbie, Darren
    Khanna, Kum Kum
    Mohamed, Ahmed
    Hill, Michelle M.
    Trau, Matt
    PROTEOMICS, 2024, 24 (11)
  • [36] Integrated Multi-omic Analysis of Esthesioneuroblastomas Identifies Two Subgroups Linked to Cell Ontogeny
    Classe, Marion
    Yao, Hui
    Mouawad, Roger
    Creighton, Chad J.
    Burgess, Alice
    Allanic, Frederick
    Wassef, Michel
    Leroy, Xavier
    Verillaud, Benjamin
    Mortuaire, Geoffrey
    Bielle, Franck
    Le Tourneau, Christophe
    Kurtz, Jean-Emmanuel
    Khayat, David
    Su, Xiaoping
    Malouf, Gabriel G.
    CELL REPORTS, 2018, 25 (03): : 811 - +
  • [37] Multi-omic integration of DNA methylation and gene expression data reveals molecular vulnerabilities in glioblastoma
    Santamarina-Ojeda, Pablo
    Tejedor, Juan Ramon
    Perez, Raul F.
    Lopez, Virginia
    Roberti, Annalisa
    Mangas, Cristina
    Fernandez, Agustin F.
    Fraga, Mario F. F.
    MOLECULAR ONCOLOGY, 2023, 17 (09) : 1726 - 1743
  • [38] Multi-omic analysis to identify peripheral biomarkers of lithium response in patients with bipolar disorder
    Pisanu, Claudia
    Congiu, Donatella
    Meloni, Anna
    Chillotti, Caterina
    Ardau, Raffaella
    Severino, Giovanni
    Minelli, Alessandra
    Gennarelli, Massimo
    Lana, Beatrice
    Paribello, Pasquale
    Manchia, Mirko
    Del Zompo, Maria
    Squassina, Alessio
    BIPOLAR DISORDERS, 2024, 26 : 39 - 39
  • [39] The reninness score: integrative analysis of multi-omic data to define renin cell identity.
    Xue, Bingjie
    Medrano, Silvia
    Smith, Jason
    Martini, Alexandre
    Sequeira, Maria Luisa
    Sheffield, Nathan
    Gomez, Ariel
    HYPERTENSION, 2024, 81
  • [40] Integrated multi-omic analysis of fruit maturity identifies biomarkers with drastic abundance shifts spanning the harvest period in 'Royal Gala'apple
    Favre, Laurie
    Hunter, Donald A.
    'Donoghue, Erin M. O.
    Erridge, Zoe A.
    Napier, Nathanael J.
    Somerfield, Sheryl D.
    Hunt, Martin
    McGhie, Tony K.
    Cooney, Janine M.
    Saei, Ali
    Chen, Ronan K. Y.
    McKenzie, Marian J.
    Brewster, Diane
    Martin, Harry
    Punter, Matt
    Carr, Bridie
    Tattersall, Anna
    Johnston, Jason W.
    Gibon, Yves
    Heyes, Julian A.
    Lill, Ross E.
    Brummell, David A.
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2022, 193