Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers

被引:0
|
作者
Anita Sathyanarayanan
Hamzeh M. Tanha
Divya Mehta
Dale R. Nyholt
机构
[1] Queensland University of Technology,
[2] Centre for Genomics and Personalised Health,undefined
[3] Faculty of Health,undefined
[4] Queensland University of Technology,undefined
[5] School of Biomedical Sciences,undefined
[6] Faculty of Health,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based and conventional methylome-wide association analyses for breast cancer (BrCa) and prostate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide association summary statistics (NBrCa = 228,951, NPrCa = 140,254) and prebuilt methylation prediction models, while the conventional approach identified CpG associations utilising TCGA and GEO experimental methylation data (NBrCa = 621, NPrCa = 241). Enrichment analysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings highlight the utility of integrative analysis of multi-omic cancer data to identify robust biomarkers and understand their regulatory effects on cancer risk.
引用
收藏
相关论文
共 50 条
  • [21] An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk
    Lang Wu
    Yaohua Yang
    Xingyi Guo
    Xiao-Ou Shu
    Qiuyin Cai
    Xiang Shu
    Bingshan Li
    Ran Tao
    Chong Wu
    Jason B. Nikas
    Yanfa Sun
    Jingjing Zhu
    Monique J. Roobol
    Graham G. Giles
    Hermann Brenner
    Esther M. John
    Judith Clements
    Eli Marie Grindedal
    Jong Y. Park
    Janet L. Stanford
    Zsofia Kote-Jarai
    Christopher A. Haiman
    Rosalind A. Eeles
    Wei Zheng
    Jirong Long
    Nature Communications, 11
  • [22] An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk
    Wu, Lang
    Yang, Yaohua
    Guo, Xingyi
    Shu, Xiao-Ou
    Cai, Qiuyin
    Shu, Xiang
    Li, Bingshan
    Tao, Ran
    Wu, Chong
    Nikas, Jason B.
    Sun, Yanfa
    Zhu, Jingjing
    Roobol, Monique J.
    Giles, Graham G.
    Brenner, Hermann
    John, Esther M.
    Clements, Judith
    Grindedal, Eli Marie
    Park, Jong Y.
    Stanford, Janet L.
    Kote-Jarai, Zsofia
    Haiman, Christopher A.
    Eeles, Rosalind A.
    Zheng, Wei
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [23] Multi-omic profiling of gliomas reveals distinct DNA methylation changes at tumor recurrence
    Stetson, Lindsay C.
    de Souza, Camila Ferreira
    Malta, Tathiane Maistro
    Sabedot, Thais Sarraf
    Ostrom, Quinn
    Liao, Peter
    Tirapelli, Daniela Pretti Da Cunha
    Neder, Luciano
    Carlotti, Carlos Gilberto
    Akbani, Rehan
    Salama, Sofie
    Poisson, Laila
    Brat, Daniel
    Noushmehr, Houtan
    Barnholtz-Sloan, Jill
    CANCER RESEARCH, 2016, 76
  • [24] Integrated multi-omic analysis of human retinoblastoma identifies novel regulatory networks
    Sureshbabu, V.
    Mallipatna, A.
    Guha, N.
    Sa, D.
    Lateef, S.
    Gundimeda, S.
    Padmanabhan, A.
    Shetty, R.
    Ghosh, A.
    ACTA OPHTHALMOLOGICA, 2015, 93
  • [25] Multi-Omic Analysis Identifies Epigenetic Evolution in Relapsed Acute Myeloid Leukemia
    Nuno, Kevin
    Azizi, Armon
    Koehnke, Thomas
    Corces, M. Ryan
    Majeti, Ravi
    BLOOD, 2020, 136
  • [26] Multi-omic analyses reveal aberrant DNA methylation patterns and the associated biomarkers of nasopharyngeal carcinoma and its cancer stem cells
    Jiang, Yike
    Yang, Hongtian
    Ye, Zilu
    Huang, Yunchuanxiang
    Li, Ping
    Jiang, Ziyi
    Han, Sanyang
    Ma, Lan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis
    Ding, Wubin
    Chen, Geng
    Shi, Tieliu
    EPIGENETICS, 2019, 14 (01) : 67 - 80
  • [28] Predicting response to treatment in early breast cancer using dynamic integrative multi-omic profiling
    Sammut, Stephen-John
    Crispin-Ortuzar, Mireia
    Chin, Suet-Feung
    Provenzano, Elena
    Cope, Wei
    Dariush, Ali
    Dawson, Sarah-Jane
    Pharoah, Paul D.
    Markowetz, Florian
    Rueda, Oscar M.
    Earl, Helena M.
    Caldas, Carlos
    CANCER RESEARCH, 2022, 82 (12)
  • [29] Breast cancer multi-omic single cell profiling identifies key progressive disease markers
    Russell, Hugh
    Rao, Manisha
    Duclos, Grant
    Aguilar, Rogelio
    Barkas, Nick
    Callahan, Megan
    Chaudhary, Ojasvi
    Gathungu, Peter
    Rands, Chris
    Shankarappa, Varsha
    Stetson, Daniel
    Rotem, Asaf
    Scaltriti, Maurizio
    Dougherty, Brian
    CANCER RESEARCH, 2024, 84 (06)
  • [30] Multi-omic Dissection of Oncogenically Active Epiproteomes Identifies Drivers of Proliferative and Invasive Breast Tumors
    Wrobel, John A.
    Xie, Ling
    Wang, Li
    Liu, Cui
    Rashid, Naim
    Gallagher, Kristalyn K.
    Xiong, Yan
    Konze, Kyle D.
    Jin, Jian
    Gatza, Michael L.
    Chen, Xian
    ISCIENCE, 2019, 17 : 359 - +