Estimation of the finite population distribution function using a global penalized calibration method

被引:0
|
作者
J. A. Mayor-Gallego
J. L. Moreno-Rebollo
M. D. Jiménez-Gamero
机构
[1] University of Seville,Department of Statistics and Operations Research
来源
关键词
Auxiliary information; Model-assisted approach; Sample survey; Penalized calibration estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Auxiliary information x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} when x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} with the weights satisfying benchmark constraints on the fitted values distribution function F^y^=Fy^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}}=F_{\hat{y}}$$\end{document} on a set of fixed values of t can be found in the literature. Alternatively, our proposal F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} seeks an estimator taking into account a global distance D(F^y^ω,Fy^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\hat{F}_{\hat{y}\omega },F_{\hat{y}})$$\end{document} between F^y^ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}\omega }$$\end{document} and Fy^,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{\hat{y}},$$\end{document} and a penalty parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} that assesses the importance of this term in the objective function. The weights are explicitly obtained for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} distance and conditions are given so that F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} to be a distribution function. In this case F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document}, for a fixed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条
  • [31] Empirical distribution function based dual use of auxiliary information for the improved estimation of finite population mean
    Hussain, Abid
    Ullah, Kalim
    Cheema, Salman A.
    Ali Khan, Akbar
    Hussain, Zawar
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (27):
  • [32] PARTIAL RATIO METHOD OF ESTIMATION OF FINITE POPULATION MEAN
    Brar, Sarbjit Singh
    Kaur, Gagandeep
    Ahlawat, Nitika
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02): : 837 - 843
  • [33] BIAS ROBUST ESTIMATION IN FINITE POPULATIONS USING NONPARAMETRIC CALIBRATION
    CHAMBERS, RL
    DORFMAN, AH
    WEHRLY, TE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 268 - 277
  • [34] The stochastic approximation method for estimation of a distribution function
    Slaoui Y.
    Mathematical Methods of Statistics, 2014, 23 (4) : 306 - 325
  • [35] Admissible estimation for finite population under the Linex loss function
    Zou, GH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 61 (02) : 373 - 384
  • [36] A novel basis function approach to finite population parameter estimation
    Ahmed, Sh.
    Shabbir, J.
    SCIENTIA IRANICA, 2023, 30 (03) : 1224 - 1244
  • [37] Calibration estimation of distribution function based on multidimensional scaling of auxiliary information
    Martinez, Sergio
    Illescas, Maria D.
    Rueda, Maria del Mar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446
  • [38] Laboratory calibration of a sensors using a global refining method
    Ye, Tao
    Zhang, Xi
    Xie, Jian Feng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (10) : 1674 - 1684
  • [39] Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling
    Hussain, Sardar
    Ahmad, Sohaib
    Saleem, Mariyam
    Akhtar, Sohail
    PLOS ONE, 2020, 15 (09):
  • [40] Improved novel estimation for estimation of population distribution function using auxiliary information under stratified sampling strategy
    Semary, H. E.
    Ahmad, Sohaib
    Hamdi, Walaa A.
    Albalawi, Olayan
    Elbatal, Ibrahim
    Chesneau, Christophe
    Almarzouki, Sanaa Mohammed
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)