Estimation of the finite population distribution function using a global penalized calibration method

被引:0
|
作者
J. A. Mayor-Gallego
J. L. Moreno-Rebollo
M. D. Jiménez-Gamero
机构
[1] University of Seville,Department of Statistics and Operations Research
来源
关键词
Auxiliary information; Model-assisted approach; Sample survey; Penalized calibration estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Auxiliary information x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} when x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} with the weights satisfying benchmark constraints on the fitted values distribution function F^y^=Fy^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}}=F_{\hat{y}}$$\end{document} on a set of fixed values of t can be found in the literature. Alternatively, our proposal F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} seeks an estimator taking into account a global distance D(F^y^ω,Fy^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\hat{F}_{\hat{y}\omega },F_{\hat{y}})$$\end{document} between F^y^ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}\omega }$$\end{document} and Fy^,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{\hat{y}},$$\end{document} and a penalty parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} that assesses the importance of this term in the objective function. The weights are explicitly obtained for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} distance and conditions are given so that F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} to be a distribution function. In this case F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document}, for a fixed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条
  • [21] Global finite element nonlinear galerkin method for the penalized navier-stokes equations
    He, YN
    Hou, YR
    Mei, LQ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (06) : 607 - 616
  • [22] Calibration Estimation Using Proposed Distance Function
    Lata, A. S.
    Rao, D. K.
    Khan, M. G. M.
    2017 4TH ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWCONCSE 2017), 2017, : 162 - +
  • [23] A family of estimators of finite-population distribution function using auxiliary information
    Singh, Housila P.
    Singh, Sarjinder
    Kozak, Marcin
    ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) : 115 - 130
  • [24] A Family of Estimators of Finite-Population Distribution Function Using Auxiliary Information
    Housila P. Singh
    Sarjinder Singh
    Marcin Kozak
    Acta Applicandae Mathematicae, 2008, 104 : 115 - 130
  • [25] GLOBAL FINITE ELEMENT NONLINEAR GALERKIN METHOD FOR THE PENALIZED NAVIER-STOKES EQUATIONS
    Yin-nian He Yan-ren Hou Li-quan Mei (Faculty of Science
    Journal of Computational Mathematics, 2001, (06) : 607 - 616
  • [26] An analysis of estimation of distribution algorithms with finite population models
    Wu, Yan
    Wang, Yuping
    Liu, Xiaoxiong
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 819 - +
  • [27] Estimation of the population distribution function using varied L ranked set sampling
    Abdallah, Mohamed S.
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) : 955 - 977
  • [28] An alternative distribution function estimation method using rational Bernstein polynomials
    Erdogan, Mahmut Sami
    Disibuyuk, Cetin
    Oruc, Ozlem Ege
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 232 - 242
  • [29] PROPERTIES OF ESTIMATORS OF THE FINITE POPULATION-DISTRIBUTION FUNCTION
    CHAMBERS, RL
    DORFMAN, AH
    HALL, P
    BIOMETRIKA, 1992, 79 (03) : 577 - 582
  • [30] Estimation of finite population distribution function with dual use of auxiliary information under non-response
    Hussain, Sardar
    Ahmad, Sohaib
    Akhtar, Sohail
    Javed, Amara
    Yasmeen, Uzma
    PLOS ONE, 2020, 15 (12):