Estimation of the finite population distribution function using a global penalized calibration method

被引:0
|
作者
J. A. Mayor-Gallego
J. L. Moreno-Rebollo
M. D. Jiménez-Gamero
机构
[1] University of Seville,Department of Statistics and Operations Research
来源
关键词
Auxiliary information; Model-assisted approach; Sample survey; Penalized calibration estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Auxiliary information x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} when x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} with the weights satisfying benchmark constraints on the fitted values distribution function F^y^=Fy^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}}=F_{\hat{y}}$$\end{document} on a set of fixed values of t can be found in the literature. Alternatively, our proposal F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} seeks an estimator taking into account a global distance D(F^y^ω,Fy^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\hat{F}_{\hat{y}\omega },F_{\hat{y}})$$\end{document} between F^y^ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}\omega }$$\end{document} and Fy^,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{\hat{y}},$$\end{document} and a penalty parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} that assesses the importance of this term in the objective function. The weights are explicitly obtained for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} distance and conditions are given so that F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} to be a distribution function. In this case F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document}, for a fixed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条
  • [1] Estimation of the finite population distribution function using a global penalized calibration method
    Mayor-Gallego, J. A.
    Moreno-Rebollo, J. L.
    Jimenez-Gamero, M. D.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (01) : 1 - 35
  • [2] Estimation of the finite population covariance using calibration
    Plikusas, A.
    Pumputis, D.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (03): : 325 - 340
  • [3] Estimation of finite population distribution function of sensitive variable
    Pal, Sanghamitra
    Shaw, Purnima
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1318 - 1331
  • [4] Estimation of finite population distribution function in a complex survey sampling
    Haq, Abdul
    Abbas, Mohsin
    Khan, Manzoor
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (08) : 2574 - 2596
  • [5] Calibration Estimation of Cumulative Distribution Function Using Robust Measures
    Abbasi, Hareem
    Hanif, Muhammad
    Shahzad, Usman
    Emam, Walid
    Tashkandy, Yusra
    Iftikhar, Soofia
    Shahzadi, Shabnam
    SYMMETRY-BASEL, 2023, 15 (06):
  • [6] Estimation of the distribution function with calibration methods
    Rueda, M.
    Martinez, S.
    Martinez, H.
    Arcos, A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (02) : 435 - 448
  • [7] Variance estimation for the finite population distribution function with complete auxiliary information
    Wu, CB
    Sitter, RR
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (02): : 289 - 307
  • [8] Model-calibration estimation of the distribution function using nonparametric regression
    Rueda, M.
    Sanchez-Borrego, I.
    Arcos, A.
    Martinez, S.
    METRIKA, 2010, 71 (01) : 33 - 44
  • [9] Model-calibration estimation of the distribution function using nonparametric regression
    M. Rueda
    I. Sánchez-Borrego
    A. Arcos
    S. Martínez
    Metrika, 2010, 71 : 33 - 44
  • [10] Estimating the Distribution Function of Finite Population Using Auxiliary Information
    Sohaib Ahmad
    Kalim Ullah
    Javid Shabbir
    Awadhesh K. Pandey
    SN Computer Science, 6 (5)