The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups

被引:0
|
作者
A. A. Trofimuk
机构
[1] Pushkin Brest State University,
来源
Algebra and Logic | 2021年 / 60卷
关键词
supersolvable group; nilpotent group; seminormal subgroup; derived subgroup; Xresidual; Sylow subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup A is seminormal in a finite group G if there exists a subgroup B such that G = AB and AX is a subgroup for each subgroup X from B. We study a group G = G1G2 . . .Gn with pairwise permutable supersolvable groups G1, . . . ,Gn such that Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ≠ j. It is stated that GU = (G')N. Here N and U are the formations of all nilpotent and supersolvable groups, and HX and H' are the X-residual and the derived subgroup, respectively, of a group H. It is proved that a group G = G1G2 . . .Gn with pairwise permutable subgroups G1, . . .,Gn is supersolvable provided that all Sylow subgroups of Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ≠ j.
引用
收藏
页码:207 / 216
页数:9
相关论文
共 50 条
  • [31] On the Solvability of a Finite Group with S-Seminormal Schmidt Subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    Zubei, E. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1741 - 1749
  • [32] Periodic linear groups factorized by mutually permutable subgroups
    Maria Ferrara
    Marco Trombetti
    Czechoslovak Mathematical Journal, 2023, 73 : 1229 - 1254
  • [33] On Supersolubility of a Group with Seminormal Subgroups
    V. S. Monakhov
    A. A. Trofimuk
    Siberian Mathematical Journal, 2020, 61 : 118 - 126
  • [34] Prefactorized subgroups in pairwise mutually permutable products
    A. Ballester-Bolinches
    J. C. Beidleman
    H. Heineken
    M. C. Pedraza-Aguilera
    Annali di Matematica Pura ed Applicata, 2013, 192 : 1043 - 1057
  • [35] Prefactorized subgroups in pairwise mutually permutable products
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Heineken, H.
    Pedraza-Aguilera, M. C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (06) : 1043 - 1057
  • [36] On the solvability of a finite group with seminormal or subnormal Schmidt subgroups of one of its maximal subgroups
    Zubei, E., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (01): : 55 - 61
  • [37] Finite groups with seminormal Sylow subgroups
    Wen Bin Guo
    Acta Mathematica Sinica, English Series, 2008, 24 : 1751 - 1757
  • [38] On generalized m-S-permutable subgroups of a finite group
    Huang, Jianhong
    Hu, Bin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1299 - 1310
  • [39] On the Lattice of all H-Permutable Subgroups of a Finite Group
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 293 - 301
  • [40] ON Π-PERMUTABLE SUBGROUPS IN FINITE GROUPS
    Hu, B.
    Huang, J.
    Adarchenko, N. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (10) : 1643 - 1653