The Supersolvable Residual of a Finite Group Factorized by Pairwise Permutable Seminormal Subgroups

被引:0
|
作者
A. A. Trofimuk
机构
[1] Pushkin Brest State University,
来源
Algebra and Logic | 2021年 / 60卷
关键词
supersolvable group; nilpotent group; seminormal subgroup; derived subgroup; Xresidual; Sylow subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup A is seminormal in a finite group G if there exists a subgroup B such that G = AB and AX is a subgroup for each subgroup X from B. We study a group G = G1G2 . . .Gn with pairwise permutable supersolvable groups G1, . . . ,Gn such that Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ≠ j. It is stated that GU = (G')N. Here N and U are the formations of all nilpotent and supersolvable groups, and HX and H' are the X-residual and the derived subgroup, respectively, of a group H. It is proved that a group G = G1G2 . . .Gn with pairwise permutable subgroups G1, . . .,Gn is supersolvable provided that all Sylow subgroups of Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ≠ j.
引用
收藏
页码:207 / 216
页数:9
相关论文
共 50 条
  • [21] On X-s-Permutable Subgroups of a Finite Group
    Min Bang SU1
    2.Department of Mathematics
    Journal of Mathematical Research with Applications, 2010, (05) : 876 - 882
  • [22] On w-s-Permutable Subgroups of a Finite Group
    Jinxin Gao
    Xiuyun Guo
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 449 - 459
  • [23] NILPOTENT AND SUPERSOLVABLE SUBGROUPS OF FINITE-GROUP EXACT ORDER
    CHUNIKHI.SA
    DOKLADY AKADEMII NAUK SSSR, 1972, 205 (03): : 542 - &
  • [24] On X-s-Permutable Subgroups of a Finite Group
    Min Bang SUYang Ming LIDepartment of MathematicsFoshan UniversityGuangdong PRChinaDepartment of MathematicsGuangdong University of EducationGuangdong PRChina
    数学研究与评论, 2010, 30 (05) : 876 - 882
  • [25] INFLUENCE ON A FINITE-GROUP OF ITS PERMUTABLE SUBGROUPS
    AGRAWAL, RK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (02): : 159 - 165
  • [26] On the Solvability of a Finite Group with S-Seminormal Schmidt Subgroups
    V. N. Knyagina
    V. S. Monakhov
    E. V. Zubei
    Ukrainian Mathematical Journal, 2019, 70 : 1741 - 1749
  • [27] On Supersolubility of a Group with Seminormal Subgroups
    Monakhov, V. S.
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (01) : 118 - 126
  • [28] ON SEMINORMAL SUBGROUPS OF FINITE GROUPS
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Perez-Calabuig, V.
    Ragland, M. F.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 419 - 427
  • [29] Periodic linear groups factorized by mutually permutable subgroups
    Ferrara, Maria
    Trombetti, Marco
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1229 - 1254
  • [30] On the Finite Group Which Is a Product of Two Subnormal Supersolvable Subgroups
    Li, Yangming
    Lv, Yubo
    Xu, Xiangyang
    MATHEMATICS, 2022, 10 (13)