Dense Sphere Packings from New Codes

被引:0
|
作者
Jürgen Bierbrauer
Yves Edel
机构
[1] Michigan Technological University,Department of Mathematical Sciences
[2] Mathematisches Institut der Universität,undefined
来源
Journal of Algebraic Combinatorics | 2000年 / 11卷
关键词
sphere packing; lattice; code; center density; hexagonal lattice; dual code; Mordell's inequality; Leech lattice;
D O I
暂无
中图分类号
学科分类号
摘要
The idea behind the coset code construction (see [G.D. Forney, Coset Codes, IEEE Transactions on Information Theory, Part I: Introduction and Geometrical Classification, pp. 1123–1151; Part II: Binary lattices and related codes, pp. 1152–1187; F.R. Kschischang and S. Pasupathy, IEEE Transactions on Information Theory 38 (1992), 227–246.]) is to reduce the construction of sphere packings to error-correcting codes in a unified way. We give here a short self-contained description of this method. In recent papers [J. Bierbrauer and Y. Edel, IEEE Transactions on Information Theory 43 (1997), 953–968; J. Bierbrauer and Y. Edel, Finite Fields and Their Applications 3 (1997), 314–333; J. Bierbrauer and Y. Edel, IEEE Transactions on Information Theory 44 (1998), 1993; J. Bierbrauer, Y. Edel, and L. Tolhuizen, Finite Fields and Their Applications, submitted for publication.] we constructed a large number of new binary, ternary and quaternary linear error-correcting codes. In a number of dimensions our new codes yield improvements. Recently Vardy [A. Vardy, Inventiones Mathematicae 121, 119–134; A. Vardy, Density doubling, double-circulants, and new sphere packings, Trans. Amer. Math. Soc. 351 (1999), 271–283.] has found a construction, which yields record densities in dimensions 20, 27, 28, 29 and 30. We give a short description of his method using the language of coset codes. Moreover we are able to apply this method in dimension 18 as well, producing a sphere packing with a record center density of (3/4)9.
引用
收藏
页码:95 / 100
页数:5
相关论文
共 50 条
  • [41] Sphere packings revisited
    Bezdek, Karoly
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 864 - 883
  • [42] First in situ determination of confined Brownian tracer motion in dense random sphere packings
    Kluijtmans, SGJM
    Philipse, AP
    LANGMUIR, 1999, 15 (06) : 1896 - 1898
  • [43] Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings
    Bruno Chareyre
    Andrea Cortis
    Emanuele Catalano
    Eric Barthélemy
    Transport in Porous Media, 2012, 94 : 595 - 615
  • [44] NOTES ON SPHERE PACKINGS
    LEECH, J
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (02): : 251 - &
  • [45] Regular sphere packings
    H. Harborth
    L. Szabó
    Z. Ujváry-Menyhárt
    Archiv der Mathematik, 2002, 78 : 81 - 89
  • [46] Modelling pore size distributions and water retention functions in dense polydisperse sphere packings
    Rouault, Y
    Assouline, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1997, 324 (07): : 573 - 581
  • [47] Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings
    Bruno Chareyre
    Andrea Cortis
    Emanuele Catalano
    Eric Barthélemy
    Transport in Porous Media, 2012, 92 : 473 - 493
  • [48] Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings
    Chareyre, Bruno
    Cortis, Andrea
    Catalano, Emanuele
    Barthelemy, Eric
    TRANSPORT IN POROUS MEDIA, 2012, 94 (02) : 595 - 615
  • [49] Sphere packings, I
    T. C. Hales
    Discrete & Computational Geometry, 1997, 17 : 1 - 51
  • [50] Sphere Packings, II
    T. C. Hales
    Discrete & Computational Geometry, 1997, 18 : 135 - 149