Dense Sphere Packings from New Codes

被引:0
|
作者
Jürgen Bierbrauer
Yves Edel
机构
[1] Michigan Technological University,Department of Mathematical Sciences
[2] Mathematisches Institut der Universität,undefined
来源
关键词
sphere packing; lattice; code; center density; hexagonal lattice; dual code; Mordell's inequality; Leech lattice;
D O I
暂无
中图分类号
学科分类号
摘要
The idea behind the coset code construction (see [G.D. Forney, Coset Codes, IEEE Transactions on Information Theory, Part I: Introduction and Geometrical Classification, pp. 1123–1151; Part II: Binary lattices and related codes, pp. 1152–1187; F.R. Kschischang and S. Pasupathy, IEEE Transactions on Information Theory 38 (1992), 227–246.]) is to reduce the construction of sphere packings to error-correcting codes in a unified way. We give here a short self-contained description of this method. In recent papers [J. Bierbrauer and Y. Edel, IEEE Transactions on Information Theory 43 (1997), 953–968; J. Bierbrauer and Y. Edel, Finite Fields and Their Applications 3 (1997), 314–333; J. Bierbrauer and Y. Edel, IEEE Transactions on Information Theory 44 (1998), 1993; J. Bierbrauer, Y. Edel, and L. Tolhuizen, Finite Fields and Their Applications, submitted for publication.] we constructed a large number of new binary, ternary and quaternary linear error-correcting codes. In a number of dimensions our new codes yield improvements. Recently Vardy [A. Vardy, Inventiones Mathematicae 121, 119–134; A. Vardy, Density doubling, double-circulants, and new sphere packings, Trans. Amer. Math. Soc. 351 (1999), 271–283.] has found a construction, which yields record densities in dimensions 20, 27, 28, 29 and 30. We give a short description of his method using the language of coset codes. Moreover we are able to apply this method in dimension 18 as well, producing a sphere packing with a record center density of (3/4)9.
引用
收藏
页码:95 / 100
页数:5
相关论文
共 50 条
  • [21] Dense sphere packings and the Wulff-shape of crystals and quasicrystals
    Schnell, U
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 : 221 - 223
  • [22] NEW CLASS OF INFINITE SPHERE PACKINGS
    BOYD, DW
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 50 (02) : 383 - 398
  • [23] LIQUID PERMEATION (AND SEDIMENTATION) OF DENSE COLLOIDAL HARD-SPHERE PACKINGS
    PHILIPSE, AP
    PATHMAMANOHARAN, C
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1993, 159 (01) : 96 - 107
  • [24] Framework Structures for Quasicrystal Models based on Dense Icosahedral Sphere Packings
    Takakura, Hiroyuki
    Yamamoto, Akiji
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C477 - C477
  • [25] SPHERE PACKINGS
    OESTERLE, J
    ASTERISQUE, 1990, (189-90) : 375 - 397
  • [26] New upper bounds on sphere packings II
    Cohn, Henry
    GEOMETRY & TOPOLOGY, 2002, 6 : 329 - 353
  • [27] Three new types of interpenetrating sphere packings
    Sowa, Heidrun
    ACTA CRYSTALLOGRAPHICA SECTION A, 2009, 65 : 326 - 327
  • [28] New upper bounds on sphere packings I
    Cohn, H
    Elkies, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 689 - 714
  • [29] Dense packings
    Herrmann, H. J.
    Baram, R. Mahmoodi
    Wackenhut, M.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 610 - 613
  • [30] New upper bounds for spherical codes and packings
    Sardari, Naser Talebizadeh
    Zargar, Masoud
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3653 - 3703