Hardy-type inequalities for functions whose Fourier transforms have gaps

被引:0
|
作者
M. S. Sababheh
机构
[1] Princess Sumaya University For Technology,
[2] University of Sharjah,undefined
关键词
Hardy’s inequality; Littlewood conjecture; Fourier transform inequalities; 42A05; 42A99;
D O I
暂无
中图分类号
学科分类号
摘要
The original proof of the Littlewood conjecture was a special case of a more general inequality of functions whose Fourier coefficients have gaps. In this article, we prove similar inequalities, but treating the Fourier transform of a function integrable on the real line, rather than on the unit circle.
引用
收藏
页码:246 / 252
页数:6
相关论文
共 50 条
  • [31] Two-sided hardy-type inequalities for monotone functions
    Stepanov, V. D.
    Persson, L. E.
    Popova, O. V.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 814 - 817
  • [32] ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
    Pales, Zsolt
    Pasteczka, Pawel
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 217 - 233
  • [33] Sharpness of some Hardy-type inequalities
    Lars-Erik Persson
    Natasha Samko
    George Tephnadze
    Journal of Inequalities and Applications, 2023
  • [34] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica,English Series, 2015, (05) : 731 - 754
  • [35] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [36] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [37] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [38] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica, 2015, 31 (05) : 731 - 754
  • [39] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [40] ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Zhangabergenova, N.
    Temirkhanova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 81 - 95