Hardy-type inequalities for functions whose Fourier transforms have gaps

被引:0
|
作者
M. S. Sababheh
机构
[1] Princess Sumaya University For Technology,
[2] University of Sharjah,undefined
关键词
Hardy’s inequality; Littlewood conjecture; Fourier transform inequalities; 42A05; 42A99;
D O I
暂无
中图分类号
学科分类号
摘要
The original proof of the Littlewood conjecture was a special case of a more general inequality of functions whose Fourier coefficients have gaps. In this article, we prove similar inequalities, but treating the Fourier transform of a function integrable on the real line, rather than on the unit circle.
引用
收藏
页码:246 / 252
页数:6
相关论文
共 50 条
  • [21] Bilateral Hardy-type inequalities
    Chen, Mu Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 1 - 32
  • [22] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646
  • [23] Discrete Hardy-type Inequalities
    Liao, Zhong-Wei
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 805 - 834
  • [24] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    数学学报, 2013, 56 (02) : 289 - 289
  • [25] On Hardy-type integral inequalities
    Leng, Tuo
    Feng, Yong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (10) : 1297 - 1304
  • [26] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [27] A note on Hardy-type inequalities
    Gao, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1977 - 1984
  • [28] Hardy-type integral inequalities for quasi-monotone functions
    Jain, Pankaj
    Singh, Monika
    Singh, Arun Pal
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (04) : 523 - 533
  • [29] Two-sided hardy-type inequalities for monotone functions
    V. D. Stepanov
    L. E. Persson
    O. V. Popova
    Doklady Mathematics, 2009, 80 : 814 - 817
  • [30] Two-sided Hardy-type inequalities for monotone functions
    Persson, Lars-Erik
    Popova, Olga V.
    Stepanov, Vladimir D.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 973 - 989