Hardy-type inequalities for functions whose Fourier transforms have gaps

被引:0
|
作者
M. S. Sababheh
机构
[1] Princess Sumaya University For Technology,
[2] University of Sharjah,undefined
关键词
Hardy’s inequality; Littlewood conjecture; Fourier transform inequalities; 42A05; 42A99;
D O I
暂无
中图分类号
学科分类号
摘要
The original proof of the Littlewood conjecture was a special case of a more general inequality of functions whose Fourier coefficients have gaps. In this article, we prove similar inequalities, but treating the Fourier transform of a function integrable on the real line, rather than on the unit circle.
引用
收藏
页码:246 / 252
页数:6
相关论文
共 50 条
  • [1] Hardy-Type Inequalities for Functions Whose Fourier Transforms Have Gaps
    Sababheh, M. S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (05): : 246 - 252
  • [2] On Hardy-Type Inequalities and Hankel Transforms
    Yuichi Kanjin
    Monatshefte für Mathematik, 1999, 127 : 311 - 319
  • [3] On hardy-type inequalities and Hankel transforms
    Kanjin, Y
    MONATSHEFTE FUR MATHEMATIK, 1999, 127 (04): : 311 - 319
  • [4] Hardy-type theorems on Fourier transforms revised
    Dyachenko, M.
    Nursultanov, E.
    Tikhonov, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 171 - 184
  • [5] Hardy-type Inequalities for Convex Functions
    Anthonio, Y. O.
    Rauf, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 263 - 271
  • [6] Hardy-type inequalities on the cones of monotone functions
    O. V. Popova
    Siberian Mathematical Journal, 2012, 53 : 152 - 167
  • [7] On the choice of weight functions in Hardy-type inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2011, 83 (02) : 177 - 181
  • [8] On the choice of weight functions in Hardy-type inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2011, 83 : 177 - 181
  • [9] HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS
    Popova, O. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 152 - 167
  • [10] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456