Systole functions and Weil–Petersson geometry

被引:0
|
作者
Yunhui Wu
机构
[1] Tsinghua University,Department of Mathematical Sciences and Yau Mathematical Sciences Center
来源
Mathematische Annalen | 2024年 / 389卷
关键词
32G15; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
A basic feature of Teichmüller theory of Riemann surfaces is the interplay of two dimensional hyperbolic geometry, the behavior of geodesic-length functions and Weil–Petersson geometry. Let Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document}(g⩾2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g\geqslant 2)$$\end{document} be the Teichmüller space of closed Riemann surfaces of genus g. Our goal in this paper is to study the gradients of geodesic-length functions along systolic curves. We show that their Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}(1⩽p⩽∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p \leqslant \infty )$$\end{document}-norms at every hyperbolic surface X∈Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \mathcal {T}_g$$\end{document} are uniformly comparable to ℓsys(X)1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{sys}(X)^{\frac{1}{p}}$$\end{document} where ℓsys(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{sys}(X)$$\end{document} is the systole of X. As an application, we show that the minimal Weil–Petersson holomorphic sectional curvature at every hyperbolic surface X∈Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \mathcal {T}_g$$\end{document} is bounded above by a uniform negative constant independent of g, which negatively answers a question of Mirzakhani. Some other applications to the geometry of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document} will also be discussed.
引用
收藏
页码:1405 / 1440
页数:35
相关论文
共 50 条
  • [41] The vanishing rate of Weil–Petersson sectional curvatures
    Scott A. Wolpert
    Geometriae Dedicata, 2021, 215 : 281 - 295
  • [42] Weil-Petersson geodesics on the modular surface
    Gadre, Vaibhav
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [43] THE BERS EMBEDDING AND THE WEIL-PETERSSON METRIC
    WOLPERT, SA
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (02) : 497 - 508
  • [44] Weil-Petersson Teichmuller space revisited
    Wu, Li
    Hu, Yun
    Shen, Yuliang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [45] DYNAMICAL PROPERTIES OF THE WEIL-PETERSSON METRIC
    Hamenstaedt, Ursula
    IN THE TRADITION OF AHLFORS-BERS, V, 2010, 510 : 109 - 127
  • [46] Irreducible Metric Maps and Weil–Petersson Volumes
    Timothy Budd
    Communications in Mathematical Physics, 2022, 394 : 887 - 917
  • [47] ON THE WEIL-PETERSSON METRIC ON TEICHMULLER SPACE
    FISCHER, AE
    TROMBA, AJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) : 319 - 335
  • [48] The Weil-Petersson and Thurston symplectic forms
    Sözen, Y
    Bonahon, F
    DUKE MATHEMATICAL JOURNAL, 2001, 108 (03) : 581 - 597
  • [49] Cluster algebras and Weil-Petersson forms
    Gekhtman, M
    Shapiro, M
    Vainshtein, A
    DUKE MATHEMATICAL JOURNAL, 2005, 127 (02) : 291 - 311
  • [50] Ergodicity of the Weil-Petersson Geodesic Flow
    Burns, Keith
    Masur, Howard
    Wilkinson, Amie
    ERGODIC THEORY AND NEGATIVE CURVATURE, 2017, 2164 : 157 - 174