Systole functions and Weil–Petersson geometry

被引:0
|
作者
Yunhui Wu
机构
[1] Tsinghua University,Department of Mathematical Sciences and Yau Mathematical Sciences Center
来源
Mathematische Annalen | 2024年 / 389卷
关键词
32G15; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
A basic feature of Teichmüller theory of Riemann surfaces is the interplay of two dimensional hyperbolic geometry, the behavior of geodesic-length functions and Weil–Petersson geometry. Let Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document}(g⩾2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g\geqslant 2)$$\end{document} be the Teichmüller space of closed Riemann surfaces of genus g. Our goal in this paper is to study the gradients of geodesic-length functions along systolic curves. We show that their Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}(1⩽p⩽∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p \leqslant \infty )$$\end{document}-norms at every hyperbolic surface X∈Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \mathcal {T}_g$$\end{document} are uniformly comparable to ℓsys(X)1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{sys}(X)^{\frac{1}{p}}$$\end{document} where ℓsys(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{sys}(X)$$\end{document} is the systole of X. As an application, we show that the minimal Weil–Petersson holomorphic sectional curvature at every hyperbolic surface X∈Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \mathcal {T}_g$$\end{document} is bounded above by a uniform negative constant independent of g, which negatively answers a question of Mirzakhani. Some other applications to the geometry of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document} will also be discussed.
引用
收藏
页码:1405 / 1440
页数:35
相关论文
共 50 条