DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems

被引:0
|
作者
Thaha Mohammed
Aiiad Albeshri
Iyad Katib
Rashid Mehmood
机构
[1] Aalto University,Department of Computer Science
[2] King Abdulaziz University,Department of Computer Science
[3] King Abdulaziz University,High Performance Computing Center
来源
关键词
Sparse linear algebra; Sparse linear equation systems; Sparse matrix vector product (SpMV); Iterative solvers; Graphics processing units (GPUs); Artificial intelligence; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse linear algebra is central to many areas of engineering, science, and business. The community has done considerable work on proposing new methods for sparse matrix-vector multiplication (SpMV) computations and iterative sparse solvers on graphical processing units (GPUs). Due to vast variations in matrix features, no single method performs well across all sparse matrices. A few tools on automatic prediction of best-performing SpMV kernels have emerged recently and require many more efforts to fully utilize their potential. The utilization of a GPU by the existing SpMV kernels is far from its full capacity. Moreover, the development and performance analysis of SpMV techniques on GPUs have not been studied in sufficient depth. This paper proposes DIESEL, a deep learning-based tool that predicts and executes the best performing SpMV kernel for a given matrix using a feature set carefully devised by us through rigorous empirical and mathematical instruments. The dataset comprises 1056 matrices from 26 different real-life application domains including computational fluid dynamics, materials, electromagnetics, economics, and more. We propose a range of new metrics and methods for performance analysis, visualization, and comparison of SpMV tools. DIESEL provides better performance with its accuracy 88.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$88.2\%$$\end{document}, workload accuracy 91.96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$91.96\%$$\end{document}, and average relative loss 4.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.4\%$$\end{document}, compared to 85.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.9\%$$\end{document}, 85.31%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.31\%$$\end{document}, and 7.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.65\%$$\end{document} by the next best performing artificial intelligence (AI)-based SpMV tool. The extensive results and analyses presented in this paper provide several key insights into the performance of the SpMV tools and how these relate to the matrix datasets and the performance metrics, allowing the community to further improve and compare basic and AI-based SpMV tools in the future.
引用
收藏
页码:6313 / 6355
页数:42
相关论文
共 50 条
  • [41] Sparse Bayesian Learning-Based Channel Estimation for Fluid Antenna Systems
    Xu, Bowen
    Chen, Yu
    Cui, Qimei
    Tao, Xiaofeng
    Wong, Kai-Kit
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (02) : 325 - 329
  • [42] Multiple source localization using learning-based sparse estimation in deep ocean
    Liu, Yining
    Niu, Haiqiang
    Yang, Sisi
    Li, Zhenglin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (05): : 3773 - 3786
  • [43] Deep Learning-based Semantic Analysis of Sparse Light Field Ray Sets
    Chelli, Kelvin
    Tamboli, Roopak R.
    Herfet, Thorsten
    IEEE MMSP 2021: 2021 IEEE 23RD INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2021,
  • [44] SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting
    Alkhayat, Ghadah
    Hasan, Syed Hamid
    Mehmood, Rashid
    ENERGIES, 2022, 15 (18)
  • [45] BACS: A comprehensive tool for deep learning-based anomaly detection in edge-fog-cloud systems
    Milosevic, N.
    Jakovetic, D.
    Skrbic, S.
    Savic, M.
    Stamenkovic, D.
    Mascolo, J.
    Masera, D.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1097 - 1101
  • [46] An EM-based iterative method for solving large sparse linear systems
    Chae, Minwoo
    Walker, Stephen G.
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01): : 45 - 62
  • [47] MyoV: a deep learning-based tool for the automated quantification of muscle fibers
    Gu, Shuang
    Wen, Chaoliang
    Xiao, Zhen
    Huang, Qiang
    Jiang, Zheyi
    Liu, Honghong
    Gao, Jia
    Li, Junying
    Sun, Congjiao
    Yang, Ning
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [48] DIAROP: Automated Deep Learning-Based Diagnostic Tool for Retinopathy of Prematurity
    Attallah, Omneya
    DIAGNOSTICS, 2021, 11 (11)
  • [49] Deep learning-based automated tool for diagnosing diabetic peripheral neuropathy
    Qiao, Qincheng
    Cao, Juan
    Xue, Wen
    Qian, Jin
    Wang, Chuan
    Pan, Qi
    Lu, Bin
    Xiong, Qian
    Chen, Li
    Hou, Xinguo
    DIGITAL HEALTH, 2024, 10
  • [50] Solving Constrained Pseudoconvex Optimization Problems with deep learning-based neurodynamic optimization
    Wu, Dawen
    Lisser, Abdel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 424 - 434