DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems

被引:0
|
作者
Thaha Mohammed
Aiiad Albeshri
Iyad Katib
Rashid Mehmood
机构
[1] Aalto University,Department of Computer Science
[2] King Abdulaziz University,Department of Computer Science
[3] King Abdulaziz University,High Performance Computing Center
来源
关键词
Sparse linear algebra; Sparse linear equation systems; Sparse matrix vector product (SpMV); Iterative solvers; Graphics processing units (GPUs); Artificial intelligence; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse linear algebra is central to many areas of engineering, science, and business. The community has done considerable work on proposing new methods for sparse matrix-vector multiplication (SpMV) computations and iterative sparse solvers on graphical processing units (GPUs). Due to vast variations in matrix features, no single method performs well across all sparse matrices. A few tools on automatic prediction of best-performing SpMV kernels have emerged recently and require many more efforts to fully utilize their potential. The utilization of a GPU by the existing SpMV kernels is far from its full capacity. Moreover, the development and performance analysis of SpMV techniques on GPUs have not been studied in sufficient depth. This paper proposes DIESEL, a deep learning-based tool that predicts and executes the best performing SpMV kernel for a given matrix using a feature set carefully devised by us through rigorous empirical and mathematical instruments. The dataset comprises 1056 matrices from 26 different real-life application domains including computational fluid dynamics, materials, electromagnetics, economics, and more. We propose a range of new metrics and methods for performance analysis, visualization, and comparison of SpMV tools. DIESEL provides better performance with its accuracy 88.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$88.2\%$$\end{document}, workload accuracy 91.96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$91.96\%$$\end{document}, and average relative loss 4.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.4\%$$\end{document}, compared to 85.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.9\%$$\end{document}, 85.31%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.31\%$$\end{document}, and 7.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.65\%$$\end{document} by the next best performing artificial intelligence (AI)-based SpMV tool. The extensive results and analyses presented in this paper provide several key insights into the performance of the SpMV tools and how these relate to the matrix datasets and the performance metrics, allowing the community to further improve and compare basic and AI-based SpMV tools in the future.
引用
收藏
页码:6313 / 6355
页数:42
相关论文
共 50 条
  • [11] Deep reinforcement learning-based model predictive control of uncertain linear systems
    Hu, Pengcheng
    Cao, Xinyuan
    Zhang, Kunwu
    Shi, Yang
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,
  • [12] Hyperparameter Learning for Deep Learning-Based Recommender Systems
    Wu, Di
    Sun, Bo
    Shang, Mingsheng
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2699 - 2712
  • [13] Deep-Sync: A novel deep learning-based tool for semantic-aware subtitling synchronisation
    Martin, Alejandro
    Gonzalez-Carrasco, Israel
    Rodriguez-Fernandez, Victor
    Souto-Rico, Monica
    Camacho, David
    Ruiz-Mezcua, Belen
    NEURAL COMPUTING & APPLICATIONS, 2021,
  • [14] Deep learning and deep transfer learning-based OPM for FMF systems
    Amirabadi, M. A.
    Kahaei, M. H.
    Nezamalhosseini, S. A.
    PHYSICAL COMMUNICATION, 2023, 60
  • [15] Deep Learning-Based Localization for UWB Systems
    Nguyen, Doan Tan Anh
    Lee, Han-Gyeol
    Jeong, Eui-Rim
    Lee, Han Lim
    Joung, Jingon
    ELECTRONICS, 2020, 9 (10) : 1 - 18
  • [16] A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems
    Baniasadi, Sahba
    Rostami, Omid
    Martin, Diego
    Kaveh, Mehrdad
    SENSORS, 2022, 22 (12)
  • [17] Interpreting Deep Learning-Based Networking Systems
    Meng, Zili
    Wang, Minhu
    Bai, Jiasong
    Xu, Mingwei
    Mao, Hongzi
    Hu, Hongxin
    SIGCOMM '20: PROCEEDINGS OF THE 2020 ANNUAL CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION ON THE APPLICATIONS, TECHNOLOGIES, ARCHITECTURES, AND PROTOCOLS FOR COMPUTER COMMUNICATION, 2020, : 154 - 171
  • [18] Scalable deep learning-based recommendation systems
    Lee, Hyeungill
    Lee, Jungwoo
    ICT EXPRESS, 2019, 5 (02): : 84 - 88
  • [19] CapsCarcino: A novel sparse data deep learning tool for predicting carcinogens
    Wang, Yi-Wei
    Huang, Lei
    Jiang, Si-Wen
    Li, Kan
    Zou, Jun
    Yang, Sheng-Yong
    FOOD AND CHEMICAL TOXICOLOGY, 2020, 135
  • [20] A Fast GPU Implementation for Solving Sparse III-Posed Linear Equation Systems
    Stock, Florian
    Koch, Andreas
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 457 - 466