Minimal Polygons with Fixed Lattice Width

被引:0
|
作者
Filip Cools
Alexander Lemmens
机构
[1] The Katholieke Universiteit Leuven,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Convex lattice; Polytopes; Convex lattice polygons; Lattice width; Primary 52B20; 52C05; Secondary 05E18;
D O I
暂无
中图分类号
学科分类号
摘要
We classify the unimodular equivalence classes of inclusion-minimal polygons with a certain fixed lattice width. As a corollary, we find a sharp upper bound on the number of lattice points of these minimal polygons.
引用
收藏
页码:285 / 293
页数:8
相关论文
共 50 条
  • [31] Tiling Polygons with Lattice Triangles
    Butler, Steve
    Chung, Fan
    Graham, Ron
    Laczkovich, Miklos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 896 - 903
  • [32] Moduli dimensions of lattice polygons
    Marino Echavarria
    Max Everett
    Shinyu Huang
    Liza Jacoby
    Ralph Morrison
    Ayush K. Tewari
    Raluca Vlad
    Ben Weber
    Journal of Algebraic Combinatorics, 2022, 55 : 559 - 589
  • [33] THE VOLUME POLYNOMIAL OF LATTICE POLYGONS
    Soprunov, Ivan
    Soprunova, Jenya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [34] Stretched polygons in a lattice tube
    Atapour, M.
    Soteros, C. E.
    Whittington, S. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (32)
  • [35] THE MINIMAL FIBERING DEGREE OF A TORIC VARIETY EQUALS THE LATTICE WIDTH OF ITS POLYTOPE
    Lebovitz, Audric
    Stapleton, David
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [36] MINIMAL WIDTH AND DIAMETER OF LATTICE-POINT-FREE CONVEX-BODIES
    MCMULLEN, P
    WILLS, JM
    MATHEMATIKA, 1981, 28 (56) : 255 - 264
  • [37] Involutes of polygons of constant width in Minkowski planes
    Craizer, Marcos
    Martini, Horst
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 107 - 125
  • [38] Convex lattice polygons with all lattice points visible
    Morrison, Ralph
    Tewari, Ayush Kumar
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [39] Geometry of convex polygons and locally minimal binary trees spanning these polygons
    Ivanov, AO
    Tuzhilin, AA
    SBORNIK MATHEMATICS, 1999, 190 (1-2) : 71 - 110
  • [40] On Minimal Triangulations of Products of Convex Polygons
    Bucher-Karlsson, Michelle
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (02) : 328 - 347