Moduli dimensions of lattice polygons

被引:0
|
作者
Marino Echavarria
Max Everett
Shinyu Huang
Liza Jacoby
Ralph Morrison
Ayush K. Tewari
Raluca Vlad
Ben Weber
机构
[1] The City College of New York,
[2] Williams College,undefined
[3] Technische Universität Berlin,undefined
[4] Harvard University,undefined
来源
关键词
Tropical curves; lattice polygons; moduli spaces; 14T05; 52B20; 14H10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a lattice polygon P with g interior lattice points, we can associate to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} two moduli spaces: the moduli space of algebraic curves that are non-degenerate with respect to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} and the moduli space of tropical curves of genus g with Newton polygon P. We completely classify the possible dimensions such a moduli space can have in the tropical case. For non-hyperelliptic polygons, the dimension must be between g and 2g+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+1$$\end{document} and can take on any integer value in this range, with exceptions only in the cases of genus 3, 4, and 7. We provide a similar result for hyperelliptic polygons, for which the range of dimensions is from g to 2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-1$$\end{document}. In the case of non-hyperelliptic polygons, our results also hold for the moduli space of algebraic curves that are non-degenerate with respect to P.
引用
收藏
页码:559 / 589
页数:30
相关论文
共 50 条
  • [1] Moduli dimensions of lattice polygons
    Echavarria, Marino
    Everett, Max
    Huang, Shinyu
    Jacoby, Liza
    Morrison, Ralph
    Tewari, Ayush K.
    Vlad, Raluca
    Weber, Ben
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 559 - 589
  • [2] MODULI OF PONCELET POLYGONS
    JAKOB, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 436 : 33 - 44
  • [3] A note on the moduli space of polygons
    Mandini, Alessia
    GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 158 - 162
  • [4] Polygons in three dimensions
    Bhattacharya, Prabir
    Rosenfeld, Azriel
    Journal of Visual Communication and Image Representation, 1994, 5 (02)
  • [5] THE DIMENSIONS OF KNOTTED POLYGONS
    VANRENSBURG, EJJ
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16): : 3935 - 3948
  • [6] On the moduli space of polygons in the Euclidean plane
    Kapovich, M
    Millson, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1995, 42 (02) : 430 - 464
  • [7] ON THE MODULI SPACE OF POLYGONS IN THE EUCLIDEAN PLANE
    KAPOVICH, M
    MILLSON, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1995, 42 (01) : 133 - 164
  • [8] On the moduli space of polygons with area center
    Hazama, Fumio
    JOURNAL OF ALGEBRA, 2018, 497 : 219 - 269
  • [9] NONCROSSING LATTICE POLYGONS
    RUSHBROOKE, GS
    EVE, J
    JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1333 - 1334
  • [10] POLYGONS ON THE HONEYCOMB LATTICE
    ENTING, IG
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1371 - 1384