Moduli dimensions of lattice polygons

被引:0
|
作者
Marino Echavarria
Max Everett
Shinyu Huang
Liza Jacoby
Ralph Morrison
Ayush K. Tewari
Raluca Vlad
Ben Weber
机构
[1] The City College of New York,
[2] Williams College,undefined
[3] Technische Universität Berlin,undefined
[4] Harvard University,undefined
来源
关键词
Tropical curves; lattice polygons; moduli spaces; 14T05; 52B20; 14H10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a lattice polygon P with g interior lattice points, we can associate to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} two moduli spaces: the moduli space of algebraic curves that are non-degenerate with respect to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} and the moduli space of tropical curves of genus g with Newton polygon P. We completely classify the possible dimensions such a moduli space can have in the tropical case. For non-hyperelliptic polygons, the dimension must be between g and 2g+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+1$$\end{document} and can take on any integer value in this range, with exceptions only in the cases of genus 3, 4, and 7. We provide a similar result for hyperelliptic polygons, for which the range of dimensions is from g to 2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-1$$\end{document}. In the case of non-hyperelliptic polygons, our results also hold for the moduli space of algebraic curves that are non-degenerate with respect to P.
引用
收藏
页码:559 / 589
页数:30
相关论文
共 50 条
  • [21] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [22] Lattice polygons and the number 12
    Poonen, B
    Rodriguez-Villegas, F
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 238 - 250
  • [23] Tiling Polygons with Lattice Triangles
    Steve Butler
    Fan Chung
    Ron Graham
    Miklós Laczkovich
    Discrete & Computational Geometry, 2010, 44 : 896 - 903
  • [24] THE KNOT PROBABILITY IN LATTICE POLYGONS
    VANRENSBURG, EJJ
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3573 - 3590
  • [25] RANDOM LINKING OF LATTICE POLYGONS
    ORLANDINI, E
    VANRENSBURG, EJ
    TESI, MC
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 335 - 345
  • [26] Newton polygons as lattice points
    Chai, CL
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 967 - 990
  • [27] Asymptotics of knotted lattice polygons
    Orlandini, E
    Tesi, MC
    van Rensburg, EJJ
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 5953 - 5967
  • [28] Tiling Polygons with Lattice Triangles
    Butler, Steve
    Chung, Fan
    Graham, Ron
    Laczkovich, Miklos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 896 - 903
  • [29] THE VOLUME POLYNOMIAL OF LATTICE POLYGONS
    Soprunov, Ivan
    Soprunova, Jenya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [30] Stretched polygons in a lattice tube
    Atapour, M.
    Soteros, C. E.
    Whittington, S. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (32)