Sitnikov problem in the cyclic kite configuration

被引:0
|
作者
M. Shahbaz Ullah
K. B. Bhatnagar
M. R. Hassan
机构
[1] T. M. Bhagalpur University,
[2] S. M. College,undefined
来源
Astrophysics and Space Science | 2014年 / 354卷
关键词
Sitnikov problem; Kite configuration; Series solutions; Averaging method; Poincarė section;
D O I
暂无
中图分类号
学科分类号
摘要
This manuscript deals with the development of the series solutions of the Sitnikov kite configuration by the methods given of Lindstedt-Poincarė, using Green’s function and MacMillan. Next we have developed averaged equation of motion by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields. Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2n/3, n=2, ω is the angular velocity of the coordinate system. Lastly the periodicity of the solutions has been examined by the Poincarė section.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 50 条
  • [31] The concentric Sitnikov problem: Circular case
    Ullah, M. Shahbaz
    Idrisi, M. Javed
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [32] On the families of periodic orbits of the Sitnikov problem
    Llibre, Jaume
    Ortega, Rafael
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02): : 561 - 576
  • [33] Symmetric periodic solutions in the Sitnikov problem
    Rafael Ortega
    Archiv der Mathematik, 2016, 107 : 405 - 412
  • [34] THE GENERALIZED KITE PROBLEM
    Franco-Perez, Luis
    Perez-Chavela, Ernesto
    Rybicki, Slawomir
    ROMANIAN ASTRONOMICAL JOURNAL, 2014, 24 (01): : 27 - 35
  • [35] The photo-gravitational concentric Sitnikov problem
    Idrisi, M. Javed
    Ullah, M. Shahbaz
    ASTRONOMY AND COMPUTING, 2023, 45
  • [36] THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM
    DANKOWICZ, H
    HOLMES, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) : 468 - 483
  • [37] A high order perturbation analysis of the Sitnikov problem
    Hagel, J
    Lhotka, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 93 (1-4): : 201 - 228
  • [38] On the periodic orbits of the circular double Sitnikov problem
    Jimenez Perez, Hugo
    Lacomba, Ernesto A.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) : 333 - 336
  • [39] New families of periodic orbits in the 4-body problem emanating from a kite configuration
    Bengochea, Abimael
    Hernandez-Garduno, Antonio
    Perez-Chavela, Ernesto
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [40] The structure of the extended phase space of the Sitnikov problem
    Kovacs, T.
    Erdi, B.
    ASTRONOMISCHE NACHRICHTEN, 2007, 328 (08) : 801 - 804