Sitnikov problem in the cyclic kite configuration

被引:0
|
作者
M. Shahbaz Ullah
K. B. Bhatnagar
M. R. Hassan
机构
[1] T. M. Bhagalpur University,
[2] S. M. College,undefined
来源
Astrophysics and Space Science | 2014年 / 354卷
关键词
Sitnikov problem; Kite configuration; Series solutions; Averaging method; Poincarė section;
D O I
暂无
中图分类号
学科分类号
摘要
This manuscript deals with the development of the series solutions of the Sitnikov kite configuration by the methods given of Lindstedt-Poincarė, using Green’s function and MacMillan. Next we have developed averaged equation of motion by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields. Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2n/3, n=2, ω is the angular velocity of the coordinate system. Lastly the periodicity of the solutions has been examined by the Poincarė section.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 50 条
  • [11] Symmetries and bifurcations in the Sitnikov problem
    Jiménez-Lara, L
    Escalona-Buendía, A
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 79 (02): : 97 - 117
  • [12] Subharmonic solutions in the sitnikov problem
    Marchesin M.
    Castilho C.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 213 - 226
  • [13] Transient chaos in the Sitnikov problem
    Kovacs, T.
    Erdi, B.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 105 (04): : 289 - 304
  • [14] On equilibrium stability in the Sitnikov problem
    V. O. Kalas
    P. S. Krasil’nikov
    Cosmic Research, 2011, 49 : 534 - 537
  • [15] Symmetries and Bifurcations in the Sitnikov Problem
    Lidia Jiménez-Lara
    Adolfo Escalona-Buendía
    Celestial Mechanics and Dynamical Astronomy, 2001, 79 : 97 - 117
  • [16] Transient chaos in the Sitnikov problem
    T. Kovács
    B. Érdi
    Celestial Mechanics and Dynamical Astronomy, 2009, 105 : 289 - 304
  • [17] Cyclic Kite Configuration with Variable Mass of the Fifth Body in R5BP
    Ansari, Abdullah A.
    Ali, Ashraf
    Alam, Mehtab
    Kellil, Rabah
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (02): : 985 - 1002
  • [18] Heteroclinic phenomena in the Sitnikov problem
    Garcia, A
    Perez-Chavela, E
    HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS (HAMSYS-98), PROCEEDINGS, 2000, 6 : 174 - 185
  • [19] On equilibrium stability in the Sitnikov problem
    Kalas, V. O.
    Krasil'nikov, P. S.
    COSMIC RESEARCH, 2011, 49 (06) : 534 - 537
  • [20] A NEW ANALYTIC APPROACH TO THE SITNIKOV PROBLEM
    Hagel, J.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1992, 53 (03): : 267 - 292