Magnetometry of neurons using a superconducting qubit

被引:0
|
作者
Hiraku Toida
Koji Sakai
Tetsuhiko F. Teshima
Masahiro Hori
Kosuke Kakuyanagi
Imran Mahboob
Yukinori Ono
Shiro Saito
机构
[1] NTT Basic Research Laboratories,Research Institute of Electronics
[2] NTT Corporation,undefined
[3] Shizuoka University,undefined
[4] Medical and Health Informatics Laboratories,undefined
[5] NTT Research Incorporated,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Iron plays important physiological and pathological roles in the human body. However, microscopic analysis including redox status by a conventional electron spin resonance (ESR) spectrometer is difficult due to limited spatial resolution and sensitivity. Here we demonstrate magnetometry of cultured neurons on a polymeric film using a superconducting flux qubit that works as a sensitive magnetometer in a microscale area towards realizing ESR spectroscopy. By changing temperature (12.5–200 mK) and a magnetic field (2.5–12.5 mT), we observe a clear magnetization signal from the neurons that is well above the control magnetometry of the polymeric film itself. From ESR spectrum measured at 10 K, the magnetization signal is identified to originate from electron spins of iron ions in neurons. This technique to detect a bio-spin system can be extended to achieve ESR spectroscopy at the single-cell level, which will give the spectroscopic fingerprint of cells.
引用
收藏
相关论文
共 50 条
  • [41] Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities
    Boissonneault, Maxime
    Gambetta, J. M.
    Blais, Alexandre
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [42] Active initialization experiment of a superconducting qubit using a quantum circuit refrigerator
    Yoshioka, Teruaki
    Mukai, Hiroto
    Tomonaga, Akiyoshi
    Takada, Shintaro
    Okazaki, Yuma
    Kaneko, Nobu-Hisa
    Nakamura, Shuji
    Tsai, Jaw-Shen
    PHYSICAL REVIEW APPLIED, 2023, 20 (04)
  • [43] Controllable two-qubit swapping gate using superconducting circuits
    Rasmussen, S. E.
    Christensen, K. S.
    Zinner, N. T.
    PHYSICAL REVIEW B, 2019, 99 (13)
  • [44] Measuring the quality factor of a microwave cavity using superconducting qubit devices
    Liu, YX
    Wei, LF
    Nori, F
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [45] Single-shot readout of a superconducting qubit using a thermal detector
    Gunyho, Andras M.
    Kundu, Suman
    Ma, Jian
    Liu, Wei
    Niemela, Sakari
    Catto, Giacomo
    Vadimov, Vasilii
    Vesterinen, Visa
    Singh, Priyank
    Chen, Qiming
    Mottonen, Mikko
    NATURE ELECTRONICS, 2024, 7 (4) : 288 - 298
  • [46] Optical readout of a superconducting qubit using a piezo-optomechanical transducer
    van Thiel, T. C.
    Weaver, M. J.
    Berto, F.
    Duivestein, P.
    Lemang, M.
    Schuurman, K. L.
    Zemlicka, M.
    Hijazi, F.
    Bernasconi, A. C.
    Ferrer, C.
    Cataldo, E.
    Lachman, E.
    Field, M.
    Mohan, Y.
    de Vries, F. K.
    Bultink, C. C.
    van Oven, J. C.
    Mutus, J. Y.
    Stockill, R.
    Groblacher, S.
    NATURE PHYSICS, 2025, 21 (03) : 401 - 405
  • [47] Role of relaxation in the quantum measurement of a superconducting qubit using a nonlinear oscillator
    Picot, T.
    Lupascu, A.
    Saito, S.
    Harmans, C. J. P. M.
    Mooij, J. E.
    PHYSICAL REVIEW B, 2008, 78 (13):
  • [48] Using sideband transitions for two-qubit operations in superconducting circuits
    Leek, P. J.
    Filipp, S.
    Maurer, P.
    Baur, M.
    Bianchetti, R.
    Fink, J. M.
    Goppl, M.
    Steffen, L.
    Wallraff, A.
    PHYSICAL REVIEW B, 2009, 79 (18)
  • [49] Characterizing Midcircuit Measurements on a Superconducting Qubit Using Gate Set Tomography
    Rudinger, Kenneth
    Ribeill, Guilhem J.
    Govia, Luke C. G.
    Ware, Matthew
    Nielsen, Erik
    Young, Kevin
    Ohki, Thomas A.
    Blume-Kohout, Robin
    Proctor, Timothy
    PHYSICAL REVIEW APPLIED, 2022, 17 (01)
  • [50] Generation of photon number states and their superpositions using a superconducting qubit in a microcavity
    Liu, YX
    Wei, LF
    Nori, F
    Realizing Controllable Quantum States: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, : 86 - 89