Magnetometry of neurons using a superconducting qubit

被引:0
|
作者
Hiraku Toida
Koji Sakai
Tetsuhiko F. Teshima
Masahiro Hori
Kosuke Kakuyanagi
Imran Mahboob
Yukinori Ono
Shiro Saito
机构
[1] NTT Basic Research Laboratories,Research Institute of Electronics
[2] NTT Corporation,undefined
[3] Shizuoka University,undefined
[4] Medical and Health Informatics Laboratories,undefined
[5] NTT Research Incorporated,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Iron plays important physiological and pathological roles in the human body. However, microscopic analysis including redox status by a conventional electron spin resonance (ESR) spectrometer is difficult due to limited spatial resolution and sensitivity. Here we demonstrate magnetometry of cultured neurons on a polymeric film using a superconducting flux qubit that works as a sensitive magnetometer in a microscale area towards realizing ESR spectroscopy. By changing temperature (12.5–200 mK) and a magnetic field (2.5–12.5 mT), we observe a clear magnetization signal from the neurons that is well above the control magnetometry of the polymeric film itself. From ESR spectrum measured at 10 K, the magnetization signal is identified to originate from electron spins of iron ions in neurons. This technique to detect a bio-spin system can be extended to achieve ESR spectroscopy at the single-cell level, which will give the spectroscopic fingerprint of cells.
引用
收藏
相关论文
共 50 条
  • [31] An Efficient Superconducting Transformer Design for SQUID Magnetometry
    J. A. B. Mates
    K. D. Irwin
    L. R. Vale
    G. C. Hilton
    H. M. Cho
    Journal of Low Temperature Physics, 2014, 176 : 483 - 489
  • [32] Qubit compatible superconducting interconnects
    Foxen, B.
    Mutus, J. Y.
    Lucero, E.
    Graff, R.
    Megrant, A.
    Chen, Yu
    Quintana, C.
    Burkett, B.
    Kelly, J.
    Jeffrey, E.
    Yang, Yan
    Yu, Anthony
    Arya, K.
    Barends, R.
    Chen, Zijun
    Chiaro, B.
    Dunsworth, A.
    Fowler, A.
    Gidney, C.
    Giustina, M.
    Huang, T.
    Klimov, P.
    Neeley, M.
    Neill, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Martinis, John M.
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01):
  • [33] Nanomechanical measurements of a superconducting qubit
    LaHaye, M. D.
    Suh, J.
    Echternach, P. M.
    Schwab, K. C.
    Roukes, M. L.
    NATURE, 2009, 459 (7249) : 960 - 964
  • [34] Dephasing of a superconducting flux qubit
    Kakuyanagi, K.
    Meno, T.
    Saito, S.
    Nakano, H.
    Semba, K.
    Takayanagi, H.
    Deppe, F.
    Shnirman, A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [35] Motional averaging in a superconducting qubit
    Li, Jian
    Silveri, M. P.
    Kumar, K. S.
    Pirkkalainen, J. -M.
    Vepsalainen, A.
    Chien, W. C.
    Tuorila, J.
    Sillanpaa, M. A.
    Hakonen, P. J.
    Thuneberg, E. V.
    Paraoanu, G. S.
    NATURE COMMUNICATIONS, 2013, 4
  • [36] Nanomechanical measurements of a superconducting qubit
    M. D. LaHaye
    J. Suh
    P. M. Echternach
    K. C. Schwab
    M. L. Roukes
    Nature, 2009, 459 : 960 - 964
  • [37] Millisecond Coherence in a Superconducting Qubit
    Somoroff, Aaron
    Ficheux, Quentin
    Mencia, Raymond A.
    Xiong, Haonan
    Kuzmin, Roman
    Manucharyan, Vladimir E.
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [38] Motional averaging in a superconducting qubit
    Jian Li
    M.P. Silveri
    K.S. Kumar
    J.-M. Pirkkalainen
    A. Vepsäläinen
    W.C. Chien
    J. Tuorila
    M.A. Sillanpää
    P.J. Hakonen
    E.V. Thuneberg
    G.S. Paraoanu
    Nature Communications, 4
  • [39] Doubly nonlinear superconducting qubit
    Dat Thanh Le
    Grimsmo, Arne
    Mueller, Clemens
    Stace, T. M.
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [40] Fluxon Readout of a Superconducting Qubit
    Fedorov, Kirill G.
    Shcherbakova, Anastasia V.
    Wolf, Michael J.
    Beckmann, Detlef
    Ustinov, Alexey V.
    PHYSICAL REVIEW LETTERS, 2014, 112 (16)