Simple Maps, Hurwitz Numbers, and Topological Recursion

被引:0
|
作者
Gaëtan Borot
Elba Garcia-Failde
机构
[1] Max Planck Institut für Mathematik,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and (higher order) free cumulants established by Collins et al. [22], and implement the symplectic transformation x↔y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \leftrightarrow y$$\end{document} on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of x and y. We propose an argument to prove this statement conditionally to a mild version of the symplectic invariance for the 1-hermitian matrix model, which is believed to be true but has not been proved yet. Our conjecture can be considered as a combinatorial interpretation of the property of symplectic invariance of the topological recursion. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces—which are generated by the Gaussian Unitary Ensemble—and with boundary perimeters (λ1,…,λn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _1,\ldots ,\lambda _n)$$\end{document} are strictly monotone double Hurwitz numbers with ramifications λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} above ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} and (2,…,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,\ldots ,2)$$\end{document} above 0. Combining with a recent result of Dubrovin et al. [24], this implies an ELSV-like formula for these Hurwitz numbers.
引用
收藏
页码:581 / 654
页数:73
相关论文
共 50 条
  • [41] HURWITZ POLYNOMIAL WITH A 3-TERM RECURSION EQUATION
    REIMER, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (05): : T397 - T398
  • [42] 2D Toda t functions, weighted Hurwitz numbers and the Cayley graph: Determinant representation and recursion formula
    Ding, Xiang-Mao
    Li, Xiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [43] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [44] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [45] Toda equations for Hurwitz numbers
    Okounkov, A
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (04) : 447 - 453
  • [46] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [47] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [48] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [49] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [50] Generating weighted Hurwitz numbers
    Bertola, M.
    Harnad, J.
    Runov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)