Simple Maps, Hurwitz Numbers, and Topological Recursion

被引:0
|
作者
Gaëtan Borot
Elba Garcia-Failde
机构
[1] Max Planck Institut für Mathematik,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and (higher order) free cumulants established by Collins et al. [22], and implement the symplectic transformation x↔y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \leftrightarrow y$$\end{document} on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of x and y. We propose an argument to prove this statement conditionally to a mild version of the symplectic invariance for the 1-hermitian matrix model, which is believed to be true but has not been proved yet. Our conjecture can be considered as a combinatorial interpretation of the property of symplectic invariance of the topological recursion. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces—which are generated by the Gaussian Unitary Ensemble—and with boundary perimeters (λ1,…,λn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _1,\ldots ,\lambda _n)$$\end{document} are strictly monotone double Hurwitz numbers with ramifications λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} above ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} and (2,…,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,\ldots ,2)$$\end{document} above 0. Combining with a recent result of Dubrovin et al. [24], this implies an ELSV-like formula for these Hurwitz numbers.
引用
收藏
页码:581 / 654
页数:73
相关论文
共 50 条
  • [21] On framed simple purely real Hurwitz numbers
    Kazarian, M. E.
    Lando, S. K.
    Natanzon, S. M.
    IZVESTIYA MATHEMATICS, 2021, 85 (04) : 681 - 704
  • [22] Spin Hurwitz numbers and topological quantum field theory
    Gunningham, Sam
    GEOMETRY & TOPOLOGY, 2016, 20 (04) : 1859 - 1907
  • [23] Formal multidimensional integrals, stuffed maps, and topological recursion
    Borot, Gaetan
    ANNALES DE L INSTITUT HENRI POINCARE D, 2014, 1 (02): : 225 - 264
  • [24] RANDOM PARTITIONS UNDER THE PLANCHEREL-HURWITZ MEASURE, HIGH-GENUS HURWITZ NUMBERS AND MAPS
    Chapuy, Guillaume
    Louf, Baptiste
    Walsh, Harriet
    ANNALS OF PROBABILITY, 2024, 52 (04): : 1225 - 1252
  • [25] Infinite-dimensional topological field theories from Hurwitz numbers
    Mironov, Andrey
    Morozov, Aleksey
    Natanzon, Sergey
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (06)
  • [26] Quantum curves for simple Hurwitz numbers of an arbitrary base curve
    Liu, Xiaojun
    Mulase, Motohico
    Sorkin, Adam
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 533 - 549
  • [27] Combinatorics of Bousquet-Melou-Schaeffer numbers in the light of topological recursion
    Bychkov, B.
    Dunin-Barkowski, P.
    Shadrin, S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 90
  • [28] Topological Analysis of Simple Segmentation Maps
    Jimenez, Maria-Jose
    Medrano, Belen
    DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2022, 2022, 13493 : 123 - 135
  • [29] NOTE ON HURWITZ NUMBERS
    RIEGER, GJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 212 - 220
  • [30] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265