The Cauchy Problem of the Nonlinear Schrödinger Equations in ℝ1+1

被引:0
|
作者
Gui-xiang Xu
机构
[1] Institute of Applied Physics and Computational Mathematics,
关键词
Schrödinger equation; cauchy problem; besov space; littlewood-paley decomposition; self-similar solution; O175.29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the local and global solution for the nonlinear Schrödinger equation with data in the homogeneous and nonhomogeneous Besov space and the scattering result for small data. The techniques to be used are adapted from the Strichartz type estimate, Kato’s smoothing effect and the maximal function (in time) estimate for the free Schrödinger operator.
引用
收藏
页码:593 / 610
页数:17
相关论文
共 50 条
  • [41] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [42] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [43] Wigner’s (2n + 1) rule for nonlinear Schrödinger equations
    János G. Ángyán
    Journal of Mathematical Chemistry, 2009, 46 : 1 - 14
  • [44] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [45] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [46] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [47] Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model
    Muhammad Raheel
    Ahmet Bekir
    Kalim U. Tariq
    Adem Cevikel
    Optical and Quantum Electronics, 2022, 54
  • [48] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [49] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265
  • [50] Remarks on scattering for nonlinear Schrödinger equations
    Kenji Nakanishi
    Tohru Ozawa
    Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 45 - 68