The Cauchy Problem of the Nonlinear Schrödinger Equations in ℝ1+1

被引:0
|
作者
Gui-xiang Xu
机构
[1] Institute of Applied Physics and Computational Mathematics,
关键词
Schrödinger equation; cauchy problem; besov space; littlewood-paley decomposition; self-similar solution; O175.29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the local and global solution for the nonlinear Schrödinger equation with data in the homogeneous and nonhomogeneous Besov space and the scattering result for small data. The techniques to be used are adapted from the Strichartz type estimate, Kato’s smoothing effect and the maximal function (in time) estimate for the free Schrödinger operator.
引用
收藏
页码:593 / 610
页数:17
相关论文
共 50 条
  • [31] Asymptotics behavior for the integrable nonlinear Schrödinger equation with quartic terms: Cauchy problem
    Lin Huang
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 592 - 615
  • [32] Blow-up of Solutions of the Cauchy Problem for a Nonlinear Schrödinger Evolution Equation
    Sh. M. Nasibov
    Doklady Mathematics, 2018, 98 : 586 - 588
  • [33] The cauchy problem of the nonlinear schrodinger equations in R1+1
    Xu, Gui-xiang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (04): : 593 - 610
  • [34] Dynamical perspective of bifurcation analysis and soliton solutions to (1+1)-dimensional nonlinear perturbed Schrödinger model
    Javed, Sara
    Ali, Asghar
    Muhammad, Taseer
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [35] Stability analysis and soliton solutions of the (1+1)-dimensional nonlinear chiral Schrödinger equation in nuclear physics
    Badshah, Fazal
    Tariq, Kalim U.
    Bekir, Ahmet
    Kazmi, S. M. Raza
    Az-Zo'bi, Emad
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (09)
  • [36] Dynamical behaviour of solitons and modulation instability analysis of a nonautonomous (1+1)-dimensional nonlinear Schrödinger equation
    Kumar V.
    Patel A.
    Optik, 2023,
  • [37] Stability analysis and soliton solutions of the(1+1)-dimensional nonlinear chiral Schr?dinger equation in nuclear physics
    Fazal Badshah
    Kalim U Tariq
    Ahmet Bekir
    S M Raza Kazmi
    Emad AzZobi
    Communications in Theoretical Physics, 2024, 76 (09) : 1 - 15
  • [38] Well-posedness of the cauchy problem for the coupled system of the Schrödinger-KdV equations
    Boling Guo
    Changxing Miao
    Acta Mathematica Sinica, 1999, 15 : 215 - 224
  • [39] Assorted optical solitons of the (1+1)- and (2+1)-dimensional Chiral nonlinear Schrödinger equations using modified extended tanh-function technique
    Luo, Jiaming
    Manafian, Jalil
    Eslami, Baharak
    Mahmoud, K. H.
    Sharma, Rohit
    Kumari, Neha
    Alsubaie, A. S. A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712