Exploiting hierarchical dependence structures for unsupervised rank fusion in information retrieval

被引:0
|
作者
Jorge Hermosillo-Valadez
Eliseo Morales-González
Francis C. Fernández-Reyes
Manuel Montes-y-Gómez
Jorge Fuentes-Pacheco
Juan M. Rendón-Mancha
机构
[1] Universidad Autónoma del Estado de Morelos,Centro de Investigación en Ciencias
[2] Instituto Nacional de Astrofísica,Laboratorio de Tecnologías del Lenguaje
[3] Óptica y Electrónica,undefined
关键词
Information retrieval; Unsupervised rank fusion; Copulas; Dependence structure;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.
引用
收藏
页码:853 / 876
页数:23
相关论文
共 50 条
  • [31] A rank fusion approach based on score distributions for prioritizing relevance assessments in information retrieval evaluation
    Losada, David E.
    Parapar, Javier
    Barreiro, Alvaro
    INFORMATION FUSION, 2018, 39 : 56 - 71
  • [32] Unsupervised Rank Aggregation using Hierarchical User Similarity Clustering
    Dutta, Sourav
    THIRTEENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2015), 2015, 278 : 37 - 47
  • [33] Neural Vector Spaces for Unsupervised Information Retrieval
    Van Gysel, Christophe
    De Rijke, Maarten
    Kanoulas, Evangelos
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2018, 36 (04)
  • [34] Exploiting Disambiguation and Discrimination in Information Retrieval Systems
    Basile, Pierpaolo
    Caputo, Annalina
    Semeraro, Giovanni
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, 2009, : 539 - 542
  • [35] Exploiting salient semantic analysis for information retrieval
    Luo, Jing
    Meng, Bo
    Quan, Changqin
    Tu, Xinhui
    ENTERPRISE INFORMATION SYSTEMS, 2016, 10 (09) : 959 - 969
  • [36] Exploiting Ontology for Concept Based Information Retrieval
    Sharan, Aditi
    Joshi, Manju Lata
    Pandey, Anupama
    INFORMATION SYSTEMS FOR INDIAN LANGUAGES, 2011, 139 : 157 - 164
  • [37] Exploiting Semantic Coherence Features for Information Retrieval
    Tu, Xinhui
    Huang, Jimmy Xiangji
    Luo, Jing
    He, Tingting
    SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2016, : 837 - 840
  • [38] Exploiting Semantic Annotations in Math Information Retrieval
    Sojka, Petr
    PROCEEDINGS OF THE FIFTH WORKSHOP ON EXPLOITING SEMANTIC ANNOTATIONS IN INFORMATION RETRIEVAL, 2012, : 15 - 16
  • [39] Framework for Logging and Exploiting the Information Retrieval Dialog
    Landwich, Paul
    Klas, Claus-Peter
    Hemmje, Matthias
    RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES, 2010, 6273 : 470 - 473
  • [40] EXPLOITING DISPARITY INFORMATION FOR STEREO IMAGE RETRIEVAL
    Chaker, A.
    Kaaniche, M.
    Benazza-Benyahia, A.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2993 - 2997