Exploiting hierarchical dependence structures for unsupervised rank fusion in information retrieval

被引:0
|
作者
Jorge Hermosillo-Valadez
Eliseo Morales-González
Francis C. Fernández-Reyes
Manuel Montes-y-Gómez
Jorge Fuentes-Pacheco
Juan M. Rendón-Mancha
机构
[1] Universidad Autónoma del Estado de Morelos,Centro de Investigación en Ciencias
[2] Instituto Nacional de Astrofísica,Laboratorio de Tecnologías del Lenguaje
[3] Óptica y Electrónica,undefined
关键词
Information retrieval; Unsupervised rank fusion; Copulas; Dependence structure;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.
引用
收藏
页码:853 / 876
页数:23
相关论文
共 50 条
  • [21] HIERARCHICAL STORAGE IN INFORMATION RETRIEVAL
    SALASIN, J
    COMMUNICATIONS OF THE ACM, 1973, 16 (05) : 291 - 295
  • [22] On hierarchical multimedia information retrieval
    Jane, Y
    Dillon, T
    Liu, J
    Pissaloux, E
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 729 - 732
  • [23] Introducing and Exploiting Hierarchical Structural Information
    Bonilla, D. Rubio
    Glass, C. W.
    Kuper, J.
    de Groote, R.
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 777 - 784
  • [24] Learning to Rank for Biomedical Information Retrieval
    Xu, Bo
    Lin, Hongfei
    Lin, Yuan
    Ma, Yunlong
    Yang, Liang
    Wang, Jian
    Yang, Zhihao
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 464 - 469
  • [25] Parallel Learning to Rank for Information Retrieval
    Wang, Shuaiqiang
    Gao, Byron J.
    Wang, Ke
    Lauw, Hady W.
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 1083 - 1084
  • [26] Information fusion in multimedia information retrieval
    Kludas, Jana
    Bruno, Eric
    Marchand-Maillet, Stephane
    ADAPTIVE MULTIMEDIAL RETRIEVAL: RETRIEVAL, USER, AND SEMANTICS, 2008, 4918 : 147 - 159
  • [27] Query Specific Rank Fusion for Image Retrieval
    Zhang, Shaoting
    Yang, Ming
    Cour, Timothee
    Yu, Kai
    Metaxas, Dimitris N.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (04) : 803 - 815
  • [28] Unsupervised rank diffusion for content-based image retrieval
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    NEUROCOMPUTING, 2017, 260 : 478 - 489
  • [29] Unsupervised graph-based rank aggregation for improved retrieval
    Dourado, Icaro Cavalcante
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da Silva
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (04) : 1260 - 1279
  • [30] Unsupervised Distance Learning by Rank Correlation Measures for Image Retrieval
    Okada, Cesar Yugo
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 331 - 338