Exploiting hierarchical dependence structures for unsupervised rank fusion in information retrieval

被引:0
|
作者
Jorge Hermosillo-Valadez
Eliseo Morales-González
Francis C. Fernández-Reyes
Manuel Montes-y-Gómez
Jorge Fuentes-Pacheco
Juan M. Rendón-Mancha
机构
[1] Universidad Autónoma del Estado de Morelos,Centro de Investigación en Ciencias
[2] Instituto Nacional de Astrofísica,Laboratorio de Tecnologías del Lenguaje
[3] Óptica y Electrónica,undefined
关键词
Information retrieval; Unsupervised rank fusion; Copulas; Dependence structure;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.
引用
收藏
页码:853 / 876
页数:23
相关论文
共 50 条
  • [1] Exploiting hierarchical dependence structures for unsupervised rank fusion in information retrieval
    Hermosillo-Valadez, Jorge
    Morales-Gonzalez, Eliseo
    Fernandez-Reyes, Francis C.
    Montes-Y-Gomez, Manuel
    Fuentes-Pacheco, Jorge
    Rendon-Mancha, Juan M.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 60 (03) : 853 - 876
  • [2] Multimodal medical information retrieval with unsupervised rank fusion
    Mourao, Andre
    Martins, Flavio
    Magalhaes, Joao
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 39 : 35 - 45
  • [3] Unsupervised selective rank fusion for image retrieval tasks
    Valem, Lucas Pascotti
    Guimaraes Pedronette, Daniel Carlos
    NEUROCOMPUTING, 2020, 377 : 182 - 199
  • [4] Graph -based selective rank fusion for unsupervised image retrieval
    Valem, Lucas Pascotti
    Guimaraes Pedronette, Daniel Carlos
    PATTERN RECOGNITION LETTERS, 2020, 135 : 82 - 89
  • [5] UNSUPERVISED FUSION FOR FORGERY LOCALIZATION EXPLOITING BACKGROUND INFORMATION
    Ferrara, P.
    Fontani, M.
    Bianchi, T.
    De Rosa, A.
    Piva, A.
    Barni, M.
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2015,
  • [6] An Unsupervised Genetic Algorithm Framework for Rank Selection and Fusion on Image Retrieval
    Valem, Lucas Pascotti
    Guimardes Pedronette, Daniel Carlos
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 58 - 62
  • [7] Unsupervised Effectiveness Estimation for Image Retrieval using Reciprocal Rank Information
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    2015 28TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES, 2015, : 321 - 328
  • [8] Unsupervised Numerical Information Extraction via Exploiting Syntactic Structures
    Wang, Zixiang
    Li, Tongliang
    Li, Zhoujun
    ELECTRONICS, 2023, 12 (09)
  • [9] Crime Scene Investigation Image Retrieval using a Hierarchical Approach and Rank Fusion
    Liu, Wei
    Wu, Chen Yang
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1974 - 1978
  • [10] Comparing rank and score combination methods for data fusion in information retrieval
    Hsu, DF
    Taksa, I
    INFORMATION RETRIEVAL, 2005, 8 (03): : 449 - 480