The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [21] Bondage number of planar graphs
    Kang, LY
    Yuan, JJ
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 191 - 198
  • [22] Independent bondage number of a graph
    Bruce Priddy
    Haiying Wang
    Bing Wei
    Journal of Combinatorial Optimization, 2019, 37 : 702 - 712
  • [23] Efficient bondage number of a graph
    Kulli, VR
    Soner, ND
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1996, 19 (9-10): : 197 - 202
  • [24] On the bondage number of middle graphs
    A. Aytaç
    T. Turaci
    Z. N. Odabaş
    Mathematical Notes, 2013, 93 : 795 - 801
  • [25] BOUNDS ON THE BONDAGE NUMBER OF A GRAPH
    HARTNELL, BL
    RALL, DF
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 173 - 177
  • [26] ON THE ROMAN BONDAGE NUMBER OF A GRAPH
    Bahremandpour, A.
    Hu, Fu-Tao
    Sheikholeslami, S. M.
    Xu, Jun-Ming
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (01)
  • [27] Bondage number in oriented graphs
    Shan, Erfang
    Kang, Liying
    ARS COMBINATORIA, 2007, 84 : 319 - 331
  • [28] The total bondage number of grid graphs
    Hu, Fu-Tao
    Lu, You
    Xu, Jun-Ming
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (16-17) : 2408 - 2418
  • [29] BONDAGE - DAVIS,P
    BARTHOLOMEW, D
    LIBRARY JOURNAL, 1994, 119 (01) : 158 - 158
  • [30] ON THE AVERAGE LOWER BONDAGE NUMBER OF A GRAPH
    Turaci, Tufan
    RAIRO-OPERATIONS RESEARCH, 2016, 50 (4-5) : 1003 - 1012