The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [11] Restrained bondage number of a graph
    Kala, R.
    Vasantha, T. R. Nirmala
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (03): : 373 - 380
  • [12] On the bondage number of middle graphs
    Aytac, A.
    Turaci, T.
    Odabas, Z. N.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 795 - 801
  • [13] THE ROMAN BONDAGE NUMBER OF A DIGRAPH
    Dehgardi, N.
    Meierling, D.
    Sheikholeslami, S. M.
    Volkmann, L.
    TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (04): : 421 - 433
  • [14] Independent bondage number of a graph
    Priddy, Bruce
    Wang, Haiying
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 702 - 712
  • [15] Bondage number of grid graphs
    Dettlaff, Magda
    Lemanska, Magdalena
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 94 - 99
  • [16] On the bondage number of block graphs
    Teschner, U
    ARS COMBINATORIA, 1997, 46 : 25 - 32
  • [17] THE BONDAGE NUMBER OF SOME GRAPHS
    Aytac, Aysun
    Odabas, Zeynep Nihan
    Turaci, Tufan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (07): : 925 - 930
  • [18] Bondage number of mesh networks
    Futao Hu
    Jun-Ming Xu
    Frontiers of Mathematics in China, 2012, 7 : 813 - 826
  • [19] The bondage number of random graphs
    Mitsche, Dieter
    Perez-Gimenez, Xavier
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [20] Total Bondage Number of a Graph
    Sridharan, N.
    Elias, M.
    Subramanian, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 203 - 209