Kernel of Vector-Valued Toeplitz Operators

被引:0
|
作者
Nicolas Chevrot
机构
[1] Université Laval,Département de mathématiques et de statistique
来源
关键词
Primary 47B32; 30D55; Secondary 46C07; 46E40; 47B35; Toeplitz operators; de Branges Rovnyak spaces; vector-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be the shift operator on the Hardy space H2 and let S* be its adjoint. A closed subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F}$$\end{document} of H2 is said to be nearly S*-invariant if every element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal F}$$\end{document} with f(0) = 0 satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^*f\in\mathcal F}$$\end{document}. In particular, the kernels of Toeplitz operators are nearly S*-invariant subspaces. Hitt gave the description of these subspaces. They are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=g (H^2\ominus u H^2)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in H^2}$$\end{document} and u inner, u(0) = 0. A very particular fact is that the operator of multiplication by g acts as an isometry on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Sarason obtained a characterization of the functions g which act isometrically on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Hayashi obtained the link between the symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} of a Toeplitz operator and the functions g and u to ensure that a given subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=gK_u}$$\end{document} is the kernel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\varphi}$$\end{document}. Chalendar, Chevrot and Partington studied the nearly S*-invariant subspaces for vector-valued functions. In this paper, we investigate the generalization of Sarason’s and Hayashi’s results in the vector-valued context.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
  • [31] On the vector-valued Fourier transform and compatibility of operators
    Park, IS
    STUDIA MATHEMATICA, 2005, 168 (02) : 95 - 108
  • [32] Kantorovich Version of Vector-Valued Shepard Operators
    Duman, Oktay
    Della Vecchia, Biancamaria
    Erkus-Duman, Esra
    AXIOMS, 2024, 13 (03)
  • [33] Irregularity Index for Vector-Valued Morphological Operators
    Marcos Eduardo Valle
    Samuel Francisco
    Marco Aurélio Granero
    Santiago Velasco-Forero
    Journal of Mathematical Imaging and Vision, 2022, 64 : 754 - 770
  • [34] Extrapolation of vector-valued rearrangement operators II
    Mueller, Paul F. X.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 722 - 736
  • [35] Hypercyclic Operators on Vector-Valued Hardy Spaces
    Hamid Rezaei
    Javad Amini Ab Alvan
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 875 - 881
  • [36] Vector-valued operators with singular kernel and Triebel-Lizorkin block spaces with variable exponents
    Ho, Kwok-Pun
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (01) : 97 - 124
  • [37] Products of Toeplitz Operators on a Vector Valued Bergman Space
    Kerr, Robert
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (03) : 367 - 395
  • [38] Coincidence of extendible vector-valued ideals with their minimal kernel
    Galicer, Daniel
    Villafane, Roman
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1743 - 1766
  • [39] Vector-Valued Reproducing Kernel Hilbert C*-Modules
    Moslehian, Mohammad Sal
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (01)
  • [40] THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE
    Lu, Yufeng
    Cui, Puyu
    Shi, Yanyue
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 237 - 252