Coincidence of extendible vector-valued ideals with their minimal kernel
被引:6
|
作者:
Galicer, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
Galicer, Daniel
[1
,2
]
Villafane, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
Villafane, Roman
[1
,2
]
机构:
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if U is an ideal of n-linear mappings we give conditions for which the equality U(E-1, . . . , E-n; F) = U-min(E-1, . . . , E-n ; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space U(E-1, . . . , E-n; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where U is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. (c) 2014 Elsevier Inc. All rights reserved.