Kernel of Vector-Valued Toeplitz Operators

被引:0
|
作者
Nicolas Chevrot
机构
[1] Université Laval,Département de mathématiques et de statistique
来源
关键词
Primary 47B32; 30D55; Secondary 46C07; 46E40; 47B35; Toeplitz operators; de Branges Rovnyak spaces; vector-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be the shift operator on the Hardy space H2 and let S* be its adjoint. A closed subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F}$$\end{document} of H2 is said to be nearly S*-invariant if every element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal F}$$\end{document} with f(0) = 0 satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^*f\in\mathcal F}$$\end{document}. In particular, the kernels of Toeplitz operators are nearly S*-invariant subspaces. Hitt gave the description of these subspaces. They are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=g (H^2\ominus u H^2)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in H^2}$$\end{document} and u inner, u(0) = 0. A very particular fact is that the operator of multiplication by g acts as an isometry on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Sarason obtained a characterization of the functions g which act isometrically on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Hayashi obtained the link between the symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} of a Toeplitz operator and the functions g and u to ensure that a given subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=gK_u}$$\end{document} is the kernel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\varphi}$$\end{document}. Chalendar, Chevrot and Partington studied the nearly S*-invariant subspaces for vector-valued functions. In this paper, we investigate the generalization of Sarason’s and Hayashi’s results in the vector-valued context.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
  • [1] Kernel of Vector-Valued Toeplitz Operators
    Chevrot, Nicolas
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (01) : 57 - 78
  • [2] Kernels of perturbed Toeplitz operators in vector-valued Hardy spaces
    Chattopadhyay, Arup
    Das, Soma
    Pradhan, Chandan
    ADVANCES IN OPERATOR THEORY, 2021, 6 (03)
  • [3] TOEPLITZ-OPERATORS ON VECTOR-VALUED HARDY-SPACES
    KHALIL, R
    FAOUR, N
    JOURNAL OF THE UNIVERSITY OF KUWAIT-SCIENCE, 1985, 12 (01): : 5 - 13
  • [4] Kernels of perturbed Toeplitz operators in vector-valued Hardy spaces
    Arup Chattopadhyay
    Soma Das
    Chandan Pradhan
    Advances in Operator Theory, 2021, 6
  • [5] Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces
    Xu, Chunxu
    Dong, Jianxiang
    Yu, Tao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (06)
  • [6] POSITIVE OPERATOR-VALUED TOEPLITZ OPERATORS ON VECTOR-VALUED GENERALIZED FOCK SPACES
    Dong, Jianxiang
    Xu, Chunxu
    Lu, Yufeng
    OPERATORS AND MATRICES, 2023, 17 (04): : 925 - 938
  • [7] Toeplitz operators in Segal-Bargmann spaces of vector-valued functions
    Cichon, D
    Shapiro, HS
    MATHEMATICA SCANDINAVICA, 2003, 93 (02) : 275 - 296
  • [8] Toeplitz Operators with Positive Operator-Valued Symbols on Vector-Valued Generalized Fock Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Acta Mathematica Scientia, 2020, 40 : 625 - 640
  • [9] Toeplitz Operators with Positive Operator-Valued Symbols on Vector-Valued Generalized Fock Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 625 - 640
  • [10] TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES
    陈建军
    王晓峰
    夏锦
    Acta Mathematica Scientia, 2020, 40 (03) : 625 - 640