Coincidence of extendible vector-valued ideals with their minimal kernel

被引:6
|
作者
Galicer, Daniel [1 ,2 ]
Villafane, Roman [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
关键词
Multilinear mappings; Radon-Nikodym property; Polynomial ideals; Metric theory of tensor products; HOMOGENEOUS POLYNOMIALS; MULTILINEAR MAPPINGS; TENSOR-PRODUCTS; BANACH; SPACES; APPROXIMATION; NUCLEAR; BASES;
D O I
10.1016/j.jmaa.2014.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if U is an ideal of n-linear mappings we give conditions for which the equality U(E-1, . . . , E-n; F) = U-min(E-1, . . . , E-n ; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space U(E-1, . . . , E-n; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where U is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1743 / 1766
页数:24
相关论文
共 50 条
  • [41] Hardy-Type Spaces Arising from a Vector-Valued Cauchy Kernel
    Muir, Jerry R., Jr.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2017, 17 (04) : 715 - 733
  • [42] Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function
    Yuan De-you
    Du Shu-de
    Cheng Zheng-xing
    CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1368 - 1376
  • [43] Vector-Valued Analytic Functions Having Vector-Valued Tempered Distributions as Boundary Values
    Carmichael, Richard D.
    AXIOMS, 2023, 12 (11)
  • [44] COVER-STRICT TOPOLOGIES, IDEALS, AND QUOTIENTS FOR SOME SPACES OF VECTOR-VALUED FUNCTIONS
    Hoim, Terje
    Robbins, D. A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 783 - 799
  • [45] Vector-valued Modular Forms
    Bantay, P.
    VERTEX OPERATOR ALGEBRAS AND RELATED AREAS, 2009, 497 : 19 - 31
  • [46] Extension of vector-valued functions
    Frerick, Leonhard
    Jorda, Enrique
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) : 499 - 507
  • [47] The vector-valued Stieltjes transform
    Lizama, C
    Prado, H
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (198): : 197 - 206
  • [48] VECTOR-VALUED ANALYTIC FUNCTIONS
    ETTER, DO
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 119 (02) : 352 - &
  • [49] On vector-valued Banach limits
    R. Armario
    F. J. García-Pacheco
    F. J. Pérez-Fernández
    Functional Analysis and Its Applications, 2013, 47 : 315 - 318
  • [50] VECTOR-VALUED TREE MARTINGALES
    He, Tong-Jun
    Yi, Quan
    Shen, Yi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1553 - 1581