Higher-Dimensional Representations of the Reflection Equation Algebra

被引:0
|
作者
D. I. Gurevich
P. A. Saponov
机构
[1] Université de Valenciennes,ISTV
[2] Institute for High Energy Physics,undefined
[3] Protvino,undefined
来源
关键词
reflection equation algebra; Hecke algebra; representations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements sk = TrqLk of the reflection equation algebra on “q-symmetric” and “q-antisymmetric” representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.
引用
收藏
页码:486 / 499
页数:13
相关论文
共 50 条
  • [31] Representations of higher-dimensional Poincare maps with applications to spacecraft trajectory design
    Haapala, Amanda F.
    Howell, Kathleen C.
    ACTA ASTRONAUTICA, 2014, 96 : 23 - 41
  • [32] Anomalies, Beta Functions, and SGUT's with Higher-Dimensional Higgs Representations
    Aranda, Alfredo
    Diaz-Cruz, J. L.
    Rojas, Alma D.
    XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2011, 1361 : 298 - +
  • [33] A class of higher-dimensional solutions of Einstein’s vacuum equation
    Gabriel Luz Almeida
    Carlos Batista
    The European Physical Journal C, 2019, 79
  • [34] A class of higher-dimensional solutions of Einstein's vacuum equation
    Almeida, Gabriel Luz
    Batista, Carlos
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (01):
  • [35] The effects on S, T and U from higher-dimensional fermion representations
    Zhang, Hong-Hao
    Cao, Yue
    Wang, Qing
    MODERN PHYSICS LETTERS A, 2007, 22 (33) : 2533 - 2538
  • [36] On higher-dimensional dynamics
    Wesson, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [37] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [38] Realization of a simple higher-dimensional noncommutative torus as a transformation group C*-algebra
    Itza-Ortiz, Benjamin A.
    Phillips, N. Christopher
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 217 - 226
  • [39] HIGHER-DIMENSIONAL COSMOLOGIES
    LORENZPETZOLD, D
    PHYSICS LETTERS B, 1984, 148 (1-3) : 43 - 47
  • [40] HIGHER-DIMENSIONAL UNIFICATION
    FREUND, PGO
    PHYSICA D, 1985, 15 (1-2): : 263 - 269