Higher-Dimensional Representations of the Reflection Equation Algebra

被引:0
|
作者
D. I. Gurevich
P. A. Saponov
机构
[1] Université de Valenciennes,ISTV
[2] Institute for High Energy Physics,undefined
[3] Protvino,undefined
来源
关键词
reflection equation algebra; Hecke algebra; representations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements sk = TrqLk of the reflection equation algebra on “q-symmetric” and “q-antisymmetric” representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.
引用
收藏
页码:486 / 499
页数:13
相关论文
共 50 条
  • [21] Higher-dimensional moving singularities in a superlinear parabolic equation
    Khin Phyu Phyu Htoo
    Jin Takahashi
    Eiji Yanagida
    Journal of Evolution Equations, 2018, 18 : 1575 - 1593
  • [22] Higher-dimensional moving singularities in a superlinear parabolic equation
    Htoo, Khin Phyu Phyu
    Takahashi, Jin
    Yanagida, Eiji
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (04) : 1575 - 1593
  • [23] Higher-dimensional neural representations predict better episodic memory
    Sheng, Jintao
    Zhang, Liang
    Liu, Chuqi
    Liu, Jing
    Feng, Junjiao
    Zhou, Yu
    Hu, Huinan
    Xue, Gui
    SCIENCE ADVANCES, 2022, 8 (16)
  • [24] A reliable analytic study for higher-dimensional telegraph equation
    Az-Zo'bi, Emad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (04): : 423 - 429
  • [25] Painleve analysis of new higher-dimensional soliton equation
    Porsezian, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (09) : 4675 - 4679
  • [26] BOUNDARY VALUE CONTROL OF HIGHER-DIMENSIONAL WAVE EQUATION
    RUSSELL, DL
    SIAM JOURNAL ON CONTROL, 1971, 9 (01): : 29 - &
  • [27] Higher-Dimensional Catenoid, Liouville Equation, and Allen-Cahn Equation
    Agudelo, Oscar
    del Pino, Manuel
    Wei, Juncheng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (23) : 7051 - 7102
  • [28] Higher-dimensional algebra .2. 2-Hilbert spaces
    Baez, JC
    ADVANCES IN MATHEMATICS, 1997, 127 (02) : 125 - 189
  • [29] Higher-dimensional WZW model on kahler manifold and toroidal Lie algebra
    Inami, T
    Ueno, T
    Kanno, H
    MODERN PHYSICS LETTERS A, 1997, 12 (36) : 2757 - 2764
  • [30] Higher-Dimensional WZW Model on Kaehler Manifold and Toroidal Lie Algebra
    Inami, T.
    Kanno, H.
    Ueno, T.
    Modern Physics Letter A, 12 (36):