Higher-Dimensional Representations of the Reflection Equation Algebra

被引:0
|
作者
D. I. Gurevich
P. A. Saponov
机构
[1] Université de Valenciennes,ISTV
[2] Institute for High Energy Physics,undefined
[3] Protvino,undefined
来源
关键词
reflection equation algebra; Hecke algebra; representations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements sk = TrqLk of the reflection equation algebra on “q-symmetric” and “q-antisymmetric” representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.
引用
收藏
页码:486 / 499
页数:13
相关论文
共 50 条
  • [1] Higher-dimensional representations of the reflection equation algebra
    Gurevich, DI
    Saponov, PA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (01) : 486 - 499
  • [2] Lie algebra of coupled higher-dimensional forced Burgers' equation
    Halder, Amlan K.
    Charalambous, Kyriakos
    Sinuvasan, R.
    Leach, P. G. L.
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1657 - 1667
  • [3] Lie algebra of coupled higher-dimensional forced Burgers’ equation
    Amlan K. Halder
    Kyriakos Charalambous
    R. Sinuvasan
    P. G. L. Leach
    Afrika Matematika, 2021, 32 : 1657 - 1667
  • [4] Higher-Dimensional Lie Algebra and New Integrable Coupling of Discrete KdV Equation
    Li Xin-Yue
    Song Hong-Wei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (01) : 7 - 15
  • [5] Higher-Dimensional Lie Algebra and New Integrable Coupling of Discrete KdV Equation
    李欣越
    宋宏伟
    CommunicationsinTheoreticalPhysics, 2010, 54 (07) : 7 - 15
  • [6] A higher-dimensional generalization of the notion of vertex algebra
    Li, HS
    JOURNAL OF ALGEBRA, 2003, 262 (01) : 1 - 41
  • [7] Multilinear algebra methods for higher-dimensional graphs
    Zahir, Alaeddine
    Jbilou, Khalide
    Ratnani, Ahmed
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 390 - 407
  • [8] Higher-dimensional Higgs representations in SGUT models
    Aranda, Alfredo
    Diaz-Cruz, J. L.
    Rojas, Alma D.
    VI INTERNATIONAL WORKSHOP ON THE DARK SIDE OF THE UNIVERSE (DSU 2010), 2011, 315
  • [9] A higher-dimensional Lie algebra and its decomposed subalgebras
    Zhang, Yufeng
    Yan, Wang
    PHYSICS LETTERS A, 2006, 360 (01) : 92 - 98
  • [10] A new higher-dimensional loop algebra and its application
    Xu, Xiuli
    Gong, Xinbo
    Zhang, Yufeng
    Song, Ming
    MODERN PHYSICS LETTERS B, 2008, 22 (18): : 1757 - 1765