The d’Alembert–Lagrange equation exploited on a Riemannian manifold

被引:0
|
作者
Xiaobo Liu
R. L. Huston
C. Q. Liu
机构
[1] University of Cincinnati,Department of Mechanical, Industrial and Nuclear Engineering
[2] General Motors,undefined
来源
Multibody System Dynamics | 2011年 / 25卷
关键词
d’Alembert–Lagrange equation; Nonholonomic systems; Riemannian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a geometric exploitation of the d’Alembert–Lagrange equation (or alternatively, Lagrange form of the d’Alembert’s principle) on a Riemannian manifold. We develop the d’Alembert–Lagrange equation in a geometric form, as well as an explicit analytic form with respect to an arbitrary frame in a coordinate neighborhood on the configuration manifold. We provide a procedure to determine the governing dynamic equations of motion. Examples are given to illustrate the new formulation of dynamic equations and their relations to alternative ones. The objective is to provide a generalized perspective of governing equations of motion and its suitability for studying complex dynamic systems subject to nonholonomic constraints.
引用
收藏
页码:411 / 427
页数:16
相关论文
共 50 条
  • [31] THE D'ALEMBERT-LAGRANGE PRINCIPLE FOR GRADIENT THEORIES AND BOUNDARY CONDITIONS
    Gouin, H.
    ASYMPTOTIC METHODS IN NONLINEAR WAVE PHENOMENA, 2007, : 79 - 95
  • [32] A probabilistic approach to a nonlinear differential equation on a Riemannian manifold
    Dynkin, EB
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1998, 42 (02) : 289 - 294
  • [33] A study of backward stochastic differential equation on a Riemannian manifold
    Chen, Xin
    Ye, Wenjie
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [34] On solutions of the d'Alembert equation on a restricted domain
    Bahyrycz, Anna
    Brzdek, Janusz
    AEQUATIONES MATHEMATICAE, 2013, 85 (1-2) : 169 - 183
  • [35] d'Alembert's other functional equation
    Ebanks, Bruce
    Stetkaer, Henrik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 319 - 349
  • [36] On the generalized stability of d'Alembert functional equation
    Chahbi, Abdellatif
    Bounader, Nordine
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (03): : 198 - 204
  • [37] LAGRANGE-D' ALEMBERT-POINCARE EQUATIONS BY SEVERAL STAGES
    Cendra, Hernan
    Diaz, Viviana A.
    JOURNAL OF GEOMETRIC MECHANICS, 2018, 10 (01): : 1 - 41
  • [38] The d'Alembert functional equation on metabelian groups
    Corovei I.
    aequationes mathematicae, 1999, 57 (2) : 201 - 205
  • [39] A variant of d’Alembert’s functional equation
    Henrik Stetkær
    Aequationes mathematicae, 2015, 89 : 657 - 662
  • [40] D'Alembert-Lagrange Principle in Symmetry of Advanced Dynamics of Systems
    Negrean, Iuliu
    Crisan, Adina Veronica
    Vlase, Sorin
    Pascu, Raluca Ioana
    SYMMETRY-BASEL, 2024, 16 (09):