The d’Alembert–Lagrange equation exploited on a Riemannian manifold

被引:0
|
作者
Xiaobo Liu
R. L. Huston
C. Q. Liu
机构
[1] University of Cincinnati,Department of Mechanical, Industrial and Nuclear Engineering
[2] General Motors,undefined
来源
Multibody System Dynamics | 2011年 / 25卷
关键词
d’Alembert–Lagrange equation; Nonholonomic systems; Riemannian manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a geometric exploitation of the d’Alembert–Lagrange equation (or alternatively, Lagrange form of the d’Alembert’s principle) on a Riemannian manifold. We develop the d’Alembert–Lagrange equation in a geometric form, as well as an explicit analytic form with respect to an arbitrary frame in a coordinate neighborhood on the configuration manifold. We provide a procedure to determine the governing dynamic equations of motion. Examples are given to illustrate the new formulation of dynamic equations and their relations to alternative ones. The objective is to provide a generalized perspective of governing equations of motion and its suitability for studying complex dynamic systems subject to nonholonomic constraints.
引用
收藏
页码:411 / 427
页数:16
相关论文
共 50 条
  • [21] The elusive d'Alembert-Lagrange dynamics of nonholonomic systems
    Flannery, M. R.
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (09) : 932 - 944
  • [22] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Jia, Zonglin
    Guo, Boling
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 45 - 76
  • [23] On solutions of the d’Alembert equation on a restricted domain
    Anna Bahyrycz
    Janusz Brzdȩk
    Aequationes mathematicae, 2013, 85 : 169 - 183
  • [24] The stability of d'Alembert's functional equation
    Tyrala I.
    aequationes mathematicae, 2005, 69 (3) : 250 - 256
  • [25] Geodesic vector fields and Eikonal equation on a Riemannian manifold
    Deshmukh, Sharief
    Khan, Viqar Azam
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 542 - 552
  • [26] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Zonglin Jia
    Boling Guo
    Frontiers of Mathematics in China, 2019, 14 : 45 - 76
  • [27] Homotopy probability theory on a Riemannian manifold and the Euler equation
    Drummond-Cole, Gabriel C.
    Terilla, John
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1065 - 1085
  • [28] Variational Approximation for Fokker–Planck Equation on Riemannian Manifold
    Xicheng Zhang
    Probability Theory and Related Fields, 2007, 137 : 519 - 539
  • [29] Perturbation method for a parabolic equation with drift on a riemannian manifold
    Bernatskaya Yu.N.
    Ukrainian Mathematical Journal, 2004, 56 (2) : 183 - 197
  • [30] A Variant of d’Alembert Functional Equation on Monoids
    Abdellatif Chahbi
    Elhoucien Elqorachi
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1127 - 1142