We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal c2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c_2$$\end{document}.
机构:
Ctr Math Sci & Applicat, 20 Garden St, Cambridge, MA 02139 USA
Boston Univ, 111 Cummington Mall, Boston, MA 02215 USACtr Math Sci & Applicat, 20 Garden St, Cambridge, MA 02139 USA
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Hashimoto, Kenji
Ueda, Kazushi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan