Brill–Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree

被引:0
|
作者
Michael Hoff
Andreas Leopold Knutsen
机构
[1] Universität des Saarlandes,Department of Mathematics
[2] University of Bergen,undefined
来源
Geometriae Dedicata | 2021年 / 213卷
关键词
K3 surfaces; Unirationality; Moduli map; Lazarsfeld–Mukai bundle; 14J28; 51M15; 14Q10; 14J10;
D O I
暂无
中图分类号
学科分类号
摘要
We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document}.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条