Dendritic Morphologies of Hot-Dip Galvanized Zn-0.2 Wt Pct Al Coatings on Steel Sheets

被引:0
|
作者
Seong Gyoon Kim
Joo-Youl Huh
Gu-Jin Chung
Hyeon-Seok Hwang
Sang-Heon Kim
机构
[1] Kunsan National University,Department of Materials Science and Engineering
[2] Korea University,Department of Materials Science and Engineering
[3] POSCO,Technical Research Laboratories
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The dendritic morphologies of hot-dip galvanized Zn-0.2 wt pct Al coatings on steel sheets with two different surface roughness conditions were systematically examined as functions of the inclination angle and axis of the Zn basal plane with respect to the sheet surface by using electron backscattered diffraction. When the inclination axis of the basal plane was ⟨12¯10⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \langle 1\bar{2}10 \rangle $$\end{document}, the dendrite changed its morphology by following the sequence of six-fold → eight-fold → elongated X → elongated X + C patterns with increasing inclination angle. When the inclination axis was ⟨101¯0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \langle 10\bar{1}0 \rangle $$\end{document}, the sequence of morphological patterns on the mirror-polished steel substrate was six-fold → eight-fold → two-fold → four-fold, whereas, for the steel substrate with a rough surface, the eight-fold pattern was missing in the sequence. These sequences of morphological changes indicated the presence of a third family of preferred dendritic growth directions, in addition to the two previously known families of ⟨101¯0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \langle 10\bar{1}0 \rangle $$\end{document} and ⟨0001⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \langle 0001 \rangle $$\end{document}. The third growth direction family is proposed to be those normal to the 12¯11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {1\bar{2}11} \right\} $$\end{document} planes. The absence of the eight-fold pattern on the rough steel surface was attributed to the surface undulation that perturbed the growth in the six weakly preferred directions toward the two strongly preferred ⟨101¯0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \langle 10\bar{1}0 \rangle $$\end{document} directions.
引用
收藏
页码:3186 / 3200
页数:14
相关论文
共 50 条
  • [31] Behavior of Zn5Al hot-dip galvanized steel members under fire exposure
    Pinger, Thomas
    Firan, Mirabela
    Mensinger, Martin
    JOURNAL OF STRUCTURAL FIRE ENGINEERING, 2024, 15 (04) : 465 - 482
  • [32] Microstructure of hot-dip galvanized Zn-Al-Mg alloy coating
    Kang-cai Yu
    Jun Li
    Xin Liu
    Jian-guo Li
    Xiao-huai Xue
    Journal of Shanghai Jiaotong University (Science), 2012, 17 (6) : 663 - 667
  • [33] Microstructure of Hot-Dip Galvanized Zn-Al-Mg Alloy Coating
    余康才
    李俊
    刘昕
    李建国
    薛小怀
    Journal of Shanghai Jiaotong University(Science), 2012, 17 (06) : 663 - 667
  • [34] Corrosion behavior of spangle on a batch hot-dip galvanized Zn-0.05Al-0.2Sb coating in 3.5 wt.% NaCl solution
    Peng, Shu
    Xie, Shi-Kun
    Xiao, Fen
    Lu, Jin-Tang
    CORROSION SCIENCE, 2020, 163
  • [35] DETERMINATION OF INTERSTITIALLY SOLVED CARBON IN HOT-DIP GALVANIZED STEEL SHEETS WITH A TORSION PENDULUM
    FUCHS, A
    HAEUSSLER, EN
    STEEL RESEARCH, 1991, 62 (04): : 183 - 188
  • [36] Influence of die material upon formability and galling of hot-dip galvanized steel sheets
    Lin, YL
    Li, HS
    Hwang, HS
    PROGRESS ON ADVANCED MANUFACTURE FOR MICRO/NANO TECHNOLOGY 2005, PT 1 AND 2, 2006, 505-507 : 691 - 696
  • [37] High anticorrosive properties of hot-dip 55 wt% Al-Zn-Si coatings on Q235 steel
    Yao, Wenli
    Li, Qian
    Li, Moucheng
    Zhang, Jieyu
    Chou, Kuochih
    ADVANCES IN SUPERALLOYS, PTS 1 AND 2, 2011, 146-147 : 306 - 309
  • [38] Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets
    Safaeirad, M.
    Toroghinejad, M. R.
    Ashrafizadeh, F.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 196 (1-3) : 205 - 212
  • [39] Press formability of newly developed high lubricity hot-dip galvanized steel sheets
    Furuya, S.
    Hoshino, K.
    Ogihara, Y.
    Yamasaki, Y.
    Taira, S.
    38TH INTERNATIONAL DEEP DRAWING RESEARCH GROUP ANNUAL CONFERENCE (IDDRG 2019), 2019, 651
  • [40] Microstructure of Batch Hot-Dip Zn-5 Wt Pct Al Coatings: Comparison of Ball-Milling Pretreatment and Conventional Pretreatment
    Li, Zhiwei
    Zhou, Shijun
    Zhou, Yulong
    Xia, Fan
    Peng, Haoping
    Wang, Jianhua
    Xie, Aijun
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (08): : 2692 - 2703