Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions

被引:0
|
作者
Maximilian Jeblick
Nikolai Leopold
Peter Pickl
机构
[1] Ludwig-Maximilians-Universität München,Mathematisches Institut
[2] Institute of Science and Technology Austria (IST Austria),undefined
[3] Duke Kunshan University,undefined
[4] Ludwig-Maximilians-Universität München,undefined
来源
Communications in Mathematical Physics | 2019年 / 372卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N-1+2βW(Nβx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$\end{document}, for any β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document}, or to be given by VN(x)=e2NV(eNx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N(x)=e^{2N} V(e^N x)$$\end{document}, for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$\end{document}. In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N$$\end{document} we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
引用
收藏
页码:1 / 69
页数:68
相关论文
共 50 条
  • [41] Imposed Conditions to Make Gauge Invariance in Gross-Pitaevskii Equation with Time-dependent Potential
    Prayitno, Teguh Budi
    Widyanirmala
    Astra, I. Made
    Sunaryo
    Fahdiran, Riser
    9TH NATIONAL PHYSICS SEMINAR 2020, 2021, 2320
  • [42] The stochastic Gross-Pitaevskii equation
    Gardiner, CW
    Anglin, JR
    Fudge, TIA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (06) : 1555 - 1582
  • [43] Logarithmic Gross-Pitaevskii equation
    Carles, Remi
    Ferriere, Guillaume
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (1-2) : 88 - 120
  • [44] Quantum Gross-Pitaevskii Equation
    Haegeman, Jutho
    Draxler, Damian
    Stojevic, Vid
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    SCIPOST PHYSICS, 2017, 3 (01):
  • [45] Two infinite families of resonant solutions for the Gross-Pitaevskii equation
    Biasi, Anxo
    Bizon, Piotr
    Craps, Ben
    Evnin, Oleg
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [46] Ground state of the time-independent Gross-Pitaevskii equation
    Dion, Claude M.
    Cances, Eric
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (10) : 787 - 798
  • [47] Derivation of the Time Dependent Two Dimensional Focusing NLS Equation
    Maximilian Jeblick
    Peter Pickl
    Journal of Statistical Physics, 2018, 172 : 1398 - 1426
  • [48] Derivation of the Time Dependent Two Dimensional Focusing NLS Equation
    Jeblick, Maximilian
    Pickl, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (05) : 1398 - 1426
  • [49] Dynamic of time-independent and time-dependent asymmetric Gross-Pitaevskii equation around exceptional point
    Ramezanpour, Shahab
    OPTICS CONTINUUM, 2024, 3 (10): : 1907 - 1917
  • [50] Microscopic derivation of the extended Gross-Pitaevskii equation for quantum droplets in binary Bose mixtures
    Hu, Hui
    Liu, Xia-Ji
    PHYSICAL REVIEW A, 2020, 102 (04)