Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions

被引:0
|
作者
Maximilian Jeblick
Nikolai Leopold
Peter Pickl
机构
[1] Ludwig-Maximilians-Universität München,Mathematisches Institut
[2] Institute of Science and Technology Austria (IST Austria),undefined
[3] Duke Kunshan University,undefined
[4] Ludwig-Maximilians-Universität München,undefined
来源
Communications in Mathematical Physics | 2019年 / 372卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N-1+2βW(Nβx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$\end{document}, for any β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document}, or to be given by VN(x)=e2NV(eNx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N(x)=e^{2N} V(e^N x)$$\end{document}, for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$\end{document}. In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N$$\end{document} we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
引用
收藏
页码:1 / 69
页数:68
相关论文
共 50 条
  • [31] Two-Dimensional Gross-Pitaevskii Equation With Space-Time White Noise
    de Bouard, Anne
    Debussche, Arnaud
    Fukuizumi, Reika
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) : 10556 - 10614
  • [32] CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
    Loncar, Vladimir
    Balaz, Antun
    Boojevic, Aleksandar
    Skrbic, Srdjan
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 406 - 410
  • [33] OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation
    Young-S, Luis E.
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    Loncar, Vladimir
    Vudragovic, Dusan
    Balaz, Antun
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 : 503 - 506
  • [34] C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Vudragovic, Dusan
    Vidanovic, Ivana
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (09) : 2021 - 2025
  • [35] THE FINITE ELEMENT METHOD FOR THE TIME-DEPENDENT GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION
    Henning, Patrick
    Malqvist, Axel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 923 - 952
  • [36] Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
    Kumar, R. Kishor
    Young-S, Luis E.
    Vudragovic, Dusan
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, S. K.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 195 : 117 - 128
  • [37] A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential
    Li, Li
    Yu, Fajun
    Duan, Chaonan
    APPLIED MATHEMATICS LETTERS, 2020, 110
  • [38] Scattering for the Gross-Pitaevskii equation
    Gustafson, Stephen
    Nakanishi, Kenji
    Tsai, Tai-Peng
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 273 - 285
  • [39] Numerical solution for the Gross–Pitaevskii equation
    Wei Hua
    Xueshen Liu
    Peizhu Ding
    Journal of Mathematical Chemistry, 2006, 40 : 243 - 255
  • [40] ROTONS AND THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PHYSICS LETTERS A, 1980, 79 (01) : 95 - 97