Communications in Mathematical Physics
|
2019年
/
372卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N-1+2βW(Nβx)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$\end{document}, for any β>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta >0$$\end{document}, or to be given by VN(x)=e2NV(eNx)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_N(x)=e^{2N} V(e^N x)$$\end{document}, for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$\end{document}. In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_N$$\end{document} we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
机构:
Ecole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, FranceEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
de Bouard, Anne
Debussche, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
Inst Univ France, Paris, FranceEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
Debussche, Arnaud
Fukuizumi, Reika
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, JapanEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
机构:
Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 4, Novi Sad 21000, SerbiaUniv Belgrade, Inst Phys Belgrade, Comp Sci Lab, Pregrevica 118, Belgrade 11080, Serbia
机构:
KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
Henning, Patrick
Malqvist, Axel
论文数: 0引用数: 0
h-index: 0
机构:
Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
Univ Gothenburg, SE-41296 Gothenburg, SwedenKTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
Li, Li
Yu, Fajun
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
Yu, Fajun
Duan, Chaonan
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China